










Preface

All problems in computer science
can be solved by another level of indirection,

except for the problem of too many layers of indirection.
– David J. Wheeler

C++ feels like a new language. That is, I can express my ideas more clearly, more simply, and
more directly in C++11 than I could in C++98. Furthermore, the resulting programs are better
checked by the compiler and run faster.

In this book, I aim for completeness. I describe every language feature and standard-library
component that a professional programmer is likely to need. For each, I provide:

• Rationale: What kinds of problems is it designed to help solve? What principles underlie
the design? What are the fundamental limitations?

• Specification: What is its definition? The level of detail is chosen for the expert program-
mer; the aspiring language lawyer can follow the many references to the ISO standard.

• Examples: How can it be used well by itself and in combination with other features? What
are the key techniques and idioms? What are the implications for maintainability and per-
formance?

The use of C++ has changed dramatically over the years and so has the language itself. From the
point of view of a programmer, most of the changes have been improvements. The current ISO
standard C++ (ISO/IEC 14882-2011, usually called C++11) is simply a far better tool for writing
quality software than were previous versions. How is it a better tool? What kinds of programming
styles and techniques does modern C++ support? What language and standard-library features sup-
port those techniques? What are the basic building blocks of elegant, correct, maintainable, and
efficient C++ code? Those are the key questions answered by this book. Many answers are not the
same as you would find with 1985, 1995, or 2005 vintage C++: progress happens.

C++ is a general-purpose programming language emphasizing the design and use of type-rich,
lightweight abstractions. It is particularly suited for resource-constrained applications, such as
those found in software infrastructures. C++ rewards the programmer who takes the time to master
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Section 2.2.5 Pointers, Arrays, and Loops 45

bound, so v has six elements, v[0] to v[5]. The size of an array must be a constant expression
(§2.2.3). A pointer variable can hold the address of an object of the appropriate type:

char� p = &v[3]; // p points to v’s four th element
char x = �p; // *p is the object that p points to

In an expression, prefix unary � means ‘‘contents of’’ and prefix unary & means ‘‘address of.’’ We
can represent the result of that initialized definition graphically:

p:

v:
0: 1: 2: 3: 4: 5:

Consider copying ten elements from one array to another:

void copy_fct()
{

int v1[10] = {0,1,2,3,4,5,6,7,8,9};
int v2[10]; // to become a copy of v1

for (auto i=0; i!=10; ++i) // copy elements
v2[i]=v1[i];

// ...
}

This for-statement can be read as ‘‘set i to zero; while i is not 10, copy the ith element and increment
i.’’ When applied to an integer variable, the increment operator, ++, simply adds 1. C++ also offers
a simpler for-statement, called a range-for-statement, for loops that traverse a sequence in the sim-
plest way:

void print()
{

int v[] = {0,1,2,3,4,5,6,7,8,9};

for (auto x : v) // for each x in v
cout << x << '\n';

for (auto x : {10,21,32,43,54,65})
cout << x << '\n';

// ...
}

The first range-for-statement can be read as ‘‘for every element of v, from the first to the last, place
a copy in x and print it.’’ Note that we don’t hav e to specify an array bound when we initialize it
with a list. The range-for-statement can be used for any sequence of elements (§3.4.1).

If we didn’t want to copy the values from v into the variable x, but rather just have x refer to an
element, we could write:
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void increment()
{

int v[] = {0,1,2,3,4,5,6,7,8,9};

for (auto& x : v)
++x;

// ...
}

In a declaration, the unary suffix & means ‘‘reference to.’’ A reference is similar to a pointer,
except that you don’t need to use a prefix � to access the value referred to by the reference. Also, a
reference cannot be made to refer to a different object after its initialization. When used in declara-
tions, operators (such as &, �, and []) are called declarator operators:

T a[n]; // T[n]: array of n Ts (§7.3)
T� p; // T*: pointer to T (§7.2)
T& r; // T&: reference to T (§7.7)
T f(A); // T(A): function taking an argument of type A returning a result of type T (§2.2.1)

We try to ensure that a pointer always points to an object, so that dereferencing it is valid. When
we don’t hav e an object to point to or if we need to represent the notion of ‘‘no object available’’
(e.g., for an end of a list), we give the pointer the value nullptr (‘‘the null pointer’’). There is only
one nullptr shared by all pointer types:

double� pd = nullptr;
Link<Record>� lst = nullptr; // pointer to a Link to a Record
int x = nullptr; // error : nullptr is a pointer not an integer

It is often wise to check that a pointer argument that is supposed to point to something, actually
points to something:

int count_x(char� p, char x)
// count the number of occurrences of x in p[]
// p is assumed to point to a zero-ter minated array of char (or to nothing)

{
if (p==nullptr) return 0;
int count = 0;
for (; �p!=0; ++p)

if (�p==x)
++count;

return count;
}

Note how we can move a pointer to point to the next element of an array using ++ and that we can
leave out the initializer in a for-statement if we don’t need it.

The definition of count_x() assumes that the char� is a C-style string, that is, that the pointer
points to a zero-terminated array of char.

In older code, 0 or NULL is typically used instead of nullptr (§7.2.2). However, using nullptr
eliminates potential confusion between integers (such as 0 or NULL) and pointers (such as nullptr).
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2.3 User-Defined Types
We call the types that can be built from the fundamental types (§2.2.2), the const modifier (§2.2.3),
and the declarator operators (§2.2.5) built-in types. C++’s set of built-in types and operations is
rich, but deliberately low-level. They directly and efficiently reflect the capabilities of conventional
computer hardware. However, they don’t provide the programmer with high-level facilities to con-
veniently write advanced applications. Instead, C++ augments the built-in types and operations
with a sophisticated set of abstraction mechanisms out of which programmers can build such high-
level facilities. The C++ abstraction mechanisms are primarily designed to let programmers design
and implement their own types, with suitable representations and operations, and for programmers
to simply and elegantly use such types. Types built out of the built-in types using C++’s abstraction
mechanisms are called user-defined types. They are referred to as classes and enumerations. Most
of this book is devoted to the design, implementation, and use of user-defined types. The rest of
this chapter presents the simplest and most fundamental facilities for that. Chapter 3 is a more
complete description of the abstraction mechanisms and the programming styles they support.
Chapter 4 and Chapter 5 present an overview of the standard library, and since the standard library
mainly consists of user-defined types, they provide examples of what can be built using the lan-
guage facilities and programming techniques presented in Chapter 2 and Chapter 3.

2.3.1 Structures
The first step in building a new type is often to organize the elements it needs into a data structure,
a struct:

struct Vector {
int sz; // number of elements
double� elem; // pointer to elements

};

This first version of Vector consists of an int and a double�.
A variable of type Vector can be defined like this:

Vector v;

However, by itself that is not of much use because v’s elem pointer doesn’t point to anything. To be
useful, we must give v some elements to point to. For example, we can construct a Vector like this:

void vector_init(Vector& v, int s)
{

v.elem = new double[s]; // allocate an array of s doubles
v.sz = s;

}

That is, v’s elem member gets a pointer produced by the new operator and v’s size member gets the
number of elements. The & in Vector& indicates that we pass v by non-const reference (§2.2.5,
§7.7); that way, vector_init() can modify the vector passed to it.

The new operator allocates memory from an area called the free store (also known as dynamic
memory and heap; §11.2).



























































































92 A Tour of C++: Containers and Algorithms Chapter 4

type ostream; cout is the standard output stream and cerr is the standard stream for reporting errors.
By default, values written to cout are converted to a sequence of characters. For example, to output
the decimal number 10, we can write:

void f()
{

cout << 10;
}

This places the character 1 followed by the character 0 on the standard output stream.
Equivalently, we could write:

void g()
{

int i {10};
cout << i;

}

Output of different types can be combined in the obvious way:

void h(int i)
{

cout << "the value of i is ";
cout << i;
cout << '\n';

}

For h(10), the output will be:

the value of i is 10

People soon tire of repeating the name of the output stream when outputting several related items.
Fortunately, the result of an output expression can itself be used for further output. For example:

void h2(int i)
{

cout << "the value of i is " << i << '\n';
}

This h2() produces the same output as h().
A character constant is a character enclosed in single quotes. Note that a character is output as

a character rather than as a numerical value. For example:

void k()
{

int b = 'b'; // note: char implicitly converted to int
char c = 'c';
cout << 'a' << b << c;

}

The integer value of the character 'b' is 98 (in the ASCII encoding used on the C++ implementation
that I used), so this will output a98c.
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containers are referred to as ‘‘unordered’’ because they don’t require an ordering function:

repunordered_map:

hash table:

For example, we can use an unordered_map from <unordered_map> for our phone book:

unordered_map<string,int> phone_book {
{"David Hume",123456},
{"Karl Popper",234567},
{"Bertrand Ar thur William Russell",345678}

};

As for a map, we can subscript an unordered_map:

int get_number(const string& s)
{

return phone_book[s];
}

The standard-library unordered_map provides a default hash function for strings. If necessary, you
can provide your own (§31.4.3.4).

4.4.5 Container Overview
The standard library provides some of the most general and useful container types to allow the pro-
grammer to select a container that best serves the needs of an application:

Standard Container Summary
vector<T> A variable-size vector (§31.4)
list<T> A doubly-linked list (§31.4.2)
forward_list<T> A singly-linked list (§31.4.2)
deque<T> A double-ended queue (§31.2)
set<T> A set (§31.4.3)
multiset<T> A set in which a value can occur many times (§31.4.3)
map<K,V> An associative array (§31.4.3)
multimap<K,V> A map in which a key can occur many times (§31.4.3)
unordered_map<K,V> A map using a hashed lookup (§31.4.3.2)
unordered_multimap<K,V> A multimap using a hashed lookup (§31.4.3.2)
unordered_set<T> A set using a hashed lookup (§31.4.3.2)
unordered_multiset<T> A multiset using a hashed lookup (§31.4.3.2)

The unordered containers are optimized for lookup with a key (often a string); in other words, they
are implemented using hash tables.
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elements:

begin() end()iterators:

In the example, sor t() sorts the sequence defined by the pair of iterators vec.begin() and vec.end() –
which just happens to be all the elements of a vector. For writing (output), you need only to specify
the first element to be written. If more than one element is written, the elements following that ini-
tial element will be overwritten. Thus, to avoid errors, lst must have at least as many elements as
there are unique values in vec.

If we wanted to place the unique elements in a new container, we could have written:

list<Entr y> f(vector<Entr y>& vec)
{

list<Entr y> res;
sor t(vec.begin(),vec.end());
unique_copy(vec.begin(),vec.end(),back_inser ter(res)); // append to res
return res;

}

A back_inser ter() adds elements at the end of a container, extending the container to make room for
them (§33.2.2). Thus, the standard containers plus back_inser ter()s eliminate the need to use error-
prone, explicit C-style memory management using realloc() (§31.5.1). The standard-library list has
a move constructor (§3.3.2, §17.5.2) that makes returning res by value efficient (even for lists of
thousands of elements).

If you find the pair-of-iterators style of code, such as sor t(vec.begin(),vec.end()), tedious, you can
define container versions of the algorithms and write sor t(vec) (§4.5.6).

4.5.1 Use of Iterators
When you first encounter a container, a few iterators referring to useful elements can be obtained;
begin() and end() are the best examples of this. In addition, many algorithms return iterators. For
example, the standard algorithm find looks for a value in a sequence and returns an iterator to the
element found:

bool has_c(const string& s, char c) // does s contain the character c?
{

auto p = find(s.begin(),s.end(),c);
if (p!=s.end())

return true;
else

return false;
}

Like many standard-library search algorithms, find returns end() to indicate ‘‘not found.’’ An equiv-
alent, shorter, definition of has_c() is:



















































































ptg10564057

144 Types and Declarations Chapter 6

hexadecimal digits). There is no limit to the number of hexadecimal digits in the sequence. A
sequence of octal or hexadecimal digits is terminated by the first character that is not an octal digit
or a hexadecimal digit, respectively. For example:

Octal Hexadecimal Decimal ASCII
'\6' '\x6' 6 ACK
'\60' '\x30' 48 '0'
'\137' '\x05f' 95 '_'

This makes it possible to represent every character in the machine’s character set and, in particular,
to embed such characters in character strings (see §7.3.2). Using any numeric notation for charac-
ters makes a program nonportable across machines with different character sets.

It is possible to enclose more than one character in a character literal, for example, 'ab'. Such
uses are archaic, implementation-dependent, and best avoided. The type of such a multicharacter
literal is int.

When embedding a numeric constant in a string using the octal notation, it is wise always to use
three digits for the number. The notation is hard enough to read without having to worry about
whether or not the character after a constant is a digit. For hexadecimal constants, use two digits.
Consider these examples:

char v1[] = "a\xah\129"; // 6 chars: 'a' '\xa' 'h' '\12' '9' '\0'
char v2[] = "a\xah\127"; // 5 chars: 'a' '\xa' 'h' '\127' '\0'
char v3[] = "a\xad\127"; // 4 chars: 'a' '\xad' '\127' '\0'
char v4[] = "a\xad\0127"; // 5 chars: 'a' '\xad' '\012' '7' '\0'

Wide character literals are of the form L'ab' and are of type wchar_t. The number of characters
between the quotes and their meanings are implementation-defined.

A C++ program can manipulate character sets that are much richer than the 127-character
ASCII set, such as Unicode. Literals of such larger character sets are presented as sequences of
four or eight hexadecimal digits preceded by a U or a u. For example:

U'\UFADEBEEF'
u'\uDEAD'
u'\xDEAD'

The shorter notation u'\uXXXX' is equivalent to U'\U0000XXXX' for any hexadecimal digit X. A num-
ber of hexadecimal digits different from four or eight is a lexical error. The meaning of the hexa-
decimal number is defined by the ISO/IEC 10646 standard and such values are called universal
character names. In the C++ standard, universal character names are described in §iso.2.2,
§iso.2.3, §iso.2.14.3, §iso.2.14.5, and §iso.E.

6.2.4 Integer Types
Like char, each integer type comes in three forms: ‘‘plain’’ int, signed int, and unsigned int. In addi-
tion, integers come in four sizes: short int, ‘‘plain’’ int, long int, and long long int. A long int can be
referred to as plain long, and a long long int can be referred to as plain long long. Similarly, short is
a synonym for short int, unsigned for unsigned int, and signed for signed int. No, there is no long
short int equivalent to int.
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1.23 .23 0.23 1. 1.0 1.2e10 1.23e−15

Note that a space cannot occur in the middle of a floating-point literal. For example, 65.43 e−21 is
not a floating-point literal but rather four separate lexical tokens (causing a syntax error):

65.43 e − 21

If you want a floating-point literal of type float, you can define one using the suffix f or F:

3.14159265f 2.0f 2.997925F 2.9e−3f

If you want a floating-point literal of type long double, you can define one using the suffix l or L:

3.14159265L 2.0L 2.997925L 2.9e−3L

6.2.6 Prefixes and Suffixes
There is a minor zoo of suffixes indicating types of literals and also a few prefixes:

Arithmetic Literal Prefixes and Suffixes
Notation �fix Meaning Example Reference ISO
0 prefix octal 0776 §6.2.4.1 §iso.2.14.2
0x 0X prefix hexadecimal 0xff §6.2.4.1 §iso.2.14.2
u U suffix unsigned 10U §6.2.4.1 §iso.2.14.2
l L suffix long 20000L §6.2.4.1 §iso.2.14.2
ll LL suffix long long 20000LL §6.2.4.1 §iso.2.14.2
f F suffix float 10f §6.2.5.1 §iso.2.14.4
e E infix floating-point 10e−4 §6.2.5.1 §iso.2.14.4
. infix floating-point 12.3 §6.2.5.1 §iso.2.14.4
' prefix char 'c' §6.2.3.2 §iso.2.14.3
u' prefix char16_t u'c' §6.2.3.2 §iso.2.14.3
U' prefix char32_t U'c' §6.2.3.2 §iso.2.14.3
L' prefix wchar_t L'c' §6.2.3.2 §iso.2.14.3
" prefix string "mess" §7.3.2 §iso.2.14.5
R" prefix raw string R"(\b)" §7.3.2.1 §iso.2.14.5
u8" u8R" prefix UTF-8 string u8"foo" §7.3.2.2 §iso.2.14.5
u" uR" prefix UTF-16 string u"foo" §7.3.2.2 §iso.2.14.5
U" UR" prefix UTF-32 string U"foo" §7.3.2.2 §iso.2.14.5
L" LR" prefix wchar_t string L"foo" §7.3.2.2 §iso.2.14.5

Note that ‘‘string’’ here means ‘‘string literal’’ (§7.3.2) rather than ‘‘of type std::string.’’
Obviously, we could also consider . and e as infix and R" and u8" as the first part of a set of

delimiters. However, I consider the nomenclature less important than giving an overview of the
bewildering variety of literals.

The suffixes l and L can be combined with the suffixes u and U to express unsigned long types.
For example:
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6.3.4 Scope
A declaration introduces a name into a scope; that is, a name can be used only in a specific part of
the program text.

• Local scope: A name declared in a function (Chapter 12) or lambda (§11.4) is called a local
name. Its scope extends from its point of declaration to the end of the block in which its de-
claration occurs. A block is a section of code delimited by a {} pair. Function and lambda
parameter names are considered local names in the outermost block of their function or
lambda.

• Class scope: A name is called a member name (or a class member name) if it is defined in a
class outside any function, class (Chapter 16), enum class (§8.4.1), or other namespace. Its
scope extends from the opening { of the class declaration to the end of the class declaration.

• Namespace scope: A name is called a namespace member name if it is defined in a name-
space (§14.3.1) outside any function, lambda (§11.4), class (Chapter 16), enum class
(§8.4.1), or other namespace. Its scope extends from the point of declaration to the end of
its namespace. A namespace name may also be accessible from other translation units
(§15.2).

• Global scope: A name is called a global name if it is defined outside any function, class
(Chapter 16), enum class (§8.4.1), or namespace (§14.3.1). The scope of a global name
extends from the point of declaration to the end of the file in which its declaration occurs. A
global name may also be accessible from other translation units (§15.2). Technically, the
global namespace is considered a namespace, so a global name is an example of a name-
space member name.

• Statement scope: A name is in a statement scope if it is defined within the () part of a for-,
while-, if-, or switch-statement. Its scope extends from its point of declaration to the end of
its statement. All names in statement scope are local names.

• Function scope: A label (§9.6) is in scope from its point of declaration until the end of the
function.

A declaration of a name in a block can hide a declaration in an enclosing block or a global name.
That is, a name can be redefined to refer to a different entity within a block. After exit from the
block, the name resumes its previous meaning. For example:

int x; // global x

void f()
{

int x; // local x hides global x
x = 1; // assign to local x
{

int x; // hides first local x
x = 2; // assign to second local x

}
x = 3; // assign to first local x

}

int� p = &x; // take address of global x
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Hiding names is unavoidable when writing large programs. However, a human reader can easily
fail to notice that a name has been hidden (also known as shadowed). Because such errors are rela-
tively rare, they can be very difficult to find. Consequently, name hiding should be minimized.
Using names such as i and x for global variables or for local variables in a large function is asking
for trouble.

A hidden global name can be referred to using the scope resolution operator, ::. For example:

int x;

void f2()
{

int x = 1; // hide global x
::x = 2; // assign to global x
x = 2; // assign to local x
// ...

}

There is no way to use a hidden local name.
The scope of a name that is not a class member starts at its point of declaration, that is, after the

complete declarator and before the initializer. This implies that a name can be used even to specify
its own initial value. For example:

int x = 97;

void f3()
{

int x = x; // per verse: initialize x with its own (uninitialized) value
}

A good compiler warns if a variable is used before it has been initialized.
It is possible to use a single name to refer to two different objects in a block without using the ::

operator. For example:

int x = 11;

void f4() // per verse: use of two different objects both called x in a single scope
{

int y = x; // use global x: y = 11
int x = 22;
y = x; // use local x: y = 22

}

Again, such subtleties are best avoided.
The names of function arguments are considered declared in the outermost block of a function.

For example:

void f5(int x)
{

int x; // error
}
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This is an error because x is defined twice in the same scope.
Names introduced in a for-statement are local to that statement (in statement scope). This

allows us to use conventional names for loop variables repeatedly in a function. For example:

void f(vector<string>& v, list<int>& lst)
{

for (const auto& x : v) cout << x << '\n';
for (auto x : lst) cout << x << '\n';
for (int i = 0, i!=v.siz e(), ++i) cout << v[i] << '\n';
for (auto i : {1, 2, 3, 4, 5, 6, 7}) cout << i << '\n';

}

This contains no name clashes.
A declaration is not allowed as the only statement on the branch of an if-statement (§9.4.1).

6.3.5 Initialization
If an initializer is specified for an object, that initializer determines the initial value of an object.
An initializer can use one of four syntactic styles:

X a1 {v};
X a2 = {v};
X a3 = v;
X a4(v);

Of these, only the first can be used in every context, and I strongly recommend its use. It is clearer
and less error-prone than the alternatives. However, the first form (used for a1) is new in C++11, so
the other three forms are what you find in older code. The two forms using = are what you use in
C. Old habits die hard, so I sometimes (inconsistently) use = when initializing a simple variable
with a simple value. For example:

int x1 = 0;
char c1 = 'z';

However, anything much more complicated than that is better done using {}. Initialization using {},
list initialization, does not allow narrowing (§iso.8.5.4). That is:

• An integer cannot be converted to another integer that cannot hold its value. For example,
char to int is allowed, but not int to char.

• A floating-point value cannot be converted to another floating-point type that cannot hold its
value. For example, float to double is allowed, but not double to float.

• A floating-point value cannot be converted to an integer type.
• An integer value cannot be converted to a floating-point type.

For example:

void f(double val, int val2)
{

int x2 = val; // if val==7.9, x2 becomes 7
char c2 = val2; // if val2==1025, c2 becomes 1
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template<typename T>
void mycopy(T� to, const T� from, int count)
{

if (is_pod<T>::value)
memcpy(to,from,count�sizeof(T));

else
for (int i=0; i!=count; ++i)

to[i]=from[i];
}

The is_pod is a standard-library type property predicate (§35.4.1) defined in <type_traits> allowing
us to ask the question ‘‘Is T a POD?’’ in our code. The best thing about is_pod<T> is that it saves
us from remembering the exact rules for what a POD is.

Note that adding or subtracting non-default constructors does not affect layout or performance
(that was not true in C++98).

If you feel an urge to become a language lawyer, study the layout and triviality concepts in the
standard (§iso.3.9, §iso.9) and try to think about their implications to programmers and compiler
writers. Doing so might cure you of the urge before it has consumed too much of your time.

8.2.7 Fields
It seems extravagant to use a whole byte (a char or a bool) to represent a binary variable – for exam-
ple, an on/off switch – but a char is the smallest object that can be independently allocated and
addressed in C++ (§7.2). It is possible, however, to bundle several such tiny variables together as
fields in a struct. A field is often called a bit-field. A member is defined to be a field by specifying
the number of bits it is to occupy. Unnamed fields are allowed. They do not affect the meaning of
the named fields, but they can be used to make the layout better in some machine-dependent way:

struct PPN { // R6000 Physical Page Number
unsigned int PFN : 22; // Page Frame Number
int : 3; // unused
unsigned int CCA : 3; // Cache Coherency Algorithm
bool nonreachable : 1;
bool dirty : 1;
bool valid : 1;
bool global : 1;

};

This example also illustrates the other main use of fields: to name parts of an externally imposed
layout. A field must be of an integral or enumeration type (§6.2.1). It is not possible to take the
address of a field. Apart from that, however, it can be used exactly like other variables. Note that a
bool field really can be represented by a single bit. In an operating system kernel or in a debugger,
the type PPN might be used like this:

void part_of_VM_system(PPN� p)
{

// ...
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if (p−>dirty) { // contents changed
// copy to disk
p−>dirty = 0;

}
}

Surprisingly, using fields to pack several variables into a single byte does not necessarily save
space. It saves data space, but the size of the code needed to manipulate these variables increases
on most machines. Programs have been known to shrink significantly when binary variables were
converted from bit-fields to characters! Furthermore, it is typically much faster to access a char or
an int than to access a field. Fields are simply a convenient shorthand for using bitwise logical
operators (§11.1.1) to extract information from and insert information into part of a word.

8.3 Unions
A union is a struct in which all members are allocated at the same address so that the union occu-
pies only as much space as its largest member. Naturally, a union can hold a value for only one
member at a time. For example, consider a symbol table entry that holds a name and a value:

enum Type { str, num };

struct Entry {
char� name;
Type t;
char� s; // use s if t==str
int i; // use i if t==num

};

void f(Entry� p)
{

if (p−>t == str)
cout << p−>s;

// ...
}

The members s and i can never be used at the same time, so space is wasted. It can be easily recov-
ered by specifying that both should be members of a union, like this:

union Value {
char� s;
int i;

};

The language doesn’t keep track of which kind of value is held by a union, so the programmer must
do that:
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struct Entry {
char� name;
Type t;
Value v; // use v.s if t==str; use v.i if t==num

};

void f(Entry� p)
{

if (p−>t == str)
cout << p−>v.s;

// ...
}

To avoid errors, one can encapsulate a union so that the correspondence between a type field and
access to the union members can be guaranteed (§8.3.2).

Unions are sometimes misused for ‘‘type conversion.’’ This misuse is practiced mainly by pro-
grammers trained in languages that do not have explicit type conversion facilities, so that cheating
is necessary. For example, the following ‘‘converts’’ an int to an int� simply by assuming bitwise
equivalence:

union Fudge {
int i;
int� p;

};

int� cheat(int i)
{

Fudge a;
a.i = i;
return a.p; // bad use

}

This is not really a conversion at all. On some machines, an int and an int� do not occupy the same
amount of space, while on others, no integer can have an odd address. Such use of a union is dan-
gerous and nonportable. If you need such an inherently ugly conversion, use an explicit type con-
version operator (§11.5.2) so that the reader can see what is going on. For example:

int� cheat2(int i)
{

return reinterpret_cast<int�>(i); // obviously ugly and dangerous
}

Here, at least the compiler has a chance to warn you if the sizes of objects are different and such
code stands out like the sore thumb it is.

Use of unions can be essential for compactness of data and through that for performance. How-
ev er, most programs don’t improve much from the use of unions and unions are rather error-prone.
Consequently, I consider unions an overused feature; avoid them when you can.
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The copy constructor works because the compiler recognizes that the reference (the const com-
plex<float>&) refers to a constant value and we just use that value (rather than trying anything
advanced or silly with references or pointers).

Literal types allow for type-rich compile-time programming. Traditionally, C++ compile-time
evaluation has been restricted to using integer values (and without functions). This has resulted in
code that was unnecessarily complicated and error-prone, as people encoded every kind of informa-
tion as integers. Some uses of template metaprogramming (Chapter 28) are examples of that.
Other programmers have simply preferred run-time evaluation to avoid the difficulties of writing in
an impoverished language.

10.4.5 Address Constant Expressions
The address of a statically allocated object (§6.4.2), such as a global variable, is a constant. How-
ev er, its value is assigned by the linker, rather than the compiler, so the compiler cannot know the
value of such an address constant. That limits the range of constant expressions of pointer and ref-
erence type. For example:

constexpr const char� p1 = "asdf";
constexpr const char� p2 = p1; // OK
constexpr const char� p2 = p1+2; // error : the compiler does not know the value of p1
constexpr char c = p1[2]; // OK, c==’d’; the compiler knows the value pointed to by p1

10.5 Implicit Type Conversion
Integral and floating-point types (§6.2.1) can be mixed freely in assignments and expressions.
Wherever possible, values are converted so as not to lose information. Unfortunately, some value-
destroying (‘‘narrowing’’) conversions are also performed implicitly. A conversion is value-pre-
serving if you can convert a value and then convert the result back to its original type and get the
original value. If a conversion cannot do that, it is a narrowing conversion (§10.5.2.6). This sec-
tion provides a description of conversion rules, conversion problems, and their resolution.

10.5.1 Promotions
The implicit conversions that preserve values are commonly referred to as promotions. Before an
arithmetic operation is performed, integral promotion is used to create ints out of shorter integer
types. Similarly, floating-point promotion is used to create doubles out of floats. Note that these
promotions will not promote to long (unless the operand is a char16_t, char32_t, wchar_t, or a plain
enumeration that is already larger than an int) or long double. This reflects the original purpose of
these promotions in C: to bring operands to the ‘‘natural’’ size for arithmetic operations.

The integral promotions are:
• A char, signed char, unsigned char, short int, or unsigned short int is converted to an int if int

can represent all the values of the source type; otherwise, it is converted to an unsigned int.
• A char16_t, char32_t, wchar_t (§6.2.3), or a plain enumeration type (§8.4.2) is converted to

the first of the following types that can represent all the values of its underlying type: int,
unsigned int, long, unsigned long, or unsigned long long.
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• A bit-field (§8.2.7) is converted to an int if int can represent all the values of the bit-field;
otherwise, it is converted to unsigned int if unsigned int can represent all the values of the
bit-field. Otherwise, no integral promotion applies to it.

• A bool is converted to an int; false becomes 0 and true becomes 1.
Promotions are used as part of the usual arithmetic conversions (§10.5.3).

10.5.2 Conversions
The fundamental types can be implicitly converted into each other in a bewildering number of ways
(§iso.4). In my opinion, too many conversions are allowed. For example:

void f(double d)
{

char c = d; // beware: double-precision floating-point to char conversion
}

When writing code, you should always aim to avoid undefined behavior and conversions that qui-
etly throw away information (‘‘narrowing conversions’’).

A compiler can warn about many questionable conversions. Fortunately, many compilers do.
The {}-initializer syntax prevents narrowing (§6.3.5). For example:

void f(double d)
{

char c {d}; // error : double-precision floating-point to char conversion
}

If potentially narrowing conversions are unavoidable, consider using some form of run-time
checked conversion function, such as narrow_cast<>() (§11.5).

10.5.2.1 Integral Conversions

An integer can be converted to another integer type. A plain enumeration value can be converted to
an integer type (§8.4.2) .

If the destination type is unsigned, the resulting value is simply as many bits from the source as
will fit in the destination (high-order bits are thrown away if necessary). More precisely, the result
is the least unsigned integer congruent to the source integer modulo 2 to the nth, where n is the
number of bits used to represent the unsigned type. For example:

unsigned char uc = 1023;// binar y 1111111111: uc becomes binary 11111111, that is, 255

If the destination type is signed, the value is unchanged if it can be represented in the destination
type; otherwise, the value is implementation-defined:

signed char sc = 1023; // implementation-defined

Plausible results are 127 and −1 (§6.2.3).
A Boolean or plain enumeration value can be implicitly converted to its integer equivalent

(§6.2.2, §8.4).
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10.5.2.2 Floating-Point Conversions

A floating-point value can be converted to another floating-point type. If the source value can be
exactly represented in the destination type, the result is the original numeric value. If the source
value is between two adjacent destination values, the result is one of those values. Otherwise, the
behavior is undefined. For example:

float f = FLT_MAX; // largest float value
double d = f; // OK: d == f

double d2 = DBL_MAX; // largest double value
float f2 = d2; // undefined if FLT_MAX<DBL_MAX

long double ld = d2; // OK: ld = d3
long double ld2 = numeric_limits<long double>::max();
double d3 = ld2; // undefined if sizeof(long double)>sizeof(double)

DBL_MAX and FLT_MAX are defined in <climits>; numeric_limits is defined in <limits> (§40.2).

10.5.2.3 Pointer and Reference Conversions

Any pointer to an object type can be implicitly converted to a void� (§7.2.1). A pointer (reference)
to a derived class can be implicitly converted to a pointer (reference) to an accessible and unam-
biguous base (§20.2). Note that a pointer to function or a pointer to member cannot be implicitly
converted to a void�.

A constant expression (§10.4) that evaluates to 0 can be implicitly converted to a null pointer of
any pointer type. Similarly, a constant expression that evaluates to 0 can be implicitly converted to
a pointer-to-member type (§20.6). For example:

int� p = (1+2)�(2�(1−1)); // OK, but weird

Prefer nullptr (§7.2.2).
A T� can be implicitly converted to a const T� (§7.5). Similarly, a T& can be implicitly con-

verted to a const T&.

10.5.2.4 Pointer-to-Member Conversions

Pointers and references to members can be implicitly converted as described in §20.6.3.

10.5.2.5 Boolean Conversions

Pointer, integral, and floating-point values can be implicitly converted to bool (§6.2.2). A nonzero
value converts to true; a zero value converts to false. For example:

void f(int� p, int i)
{

bool is_not_zero = p; // true if p!=0
bool b2 = i; // true if i!=0
// ...

}
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The delete operator may be applied only to a pointer returned by new or to the nullptr. Applying
delete to the nullptr has no effect.

If the deleted object is of a class with a destructor (§3.2.1.2, §17.2), that destructor is called by
delete before the object’s memory is released for reuse.

11.2.1 Memory Management
The main problems with free store are:

• Leaked objects: People use new and then forget to delete the allocated object.
• Premature deletion: People delete an object that they hav e some other pointer to and later

use that other pointer.
• Double deletion: An object is deleted twice, invoking its destructor (if any) twice.

Leaked objects are potentially a bad problem because they can cause a program to run out of space.
Premature deletion is almost always a nasty problem because the pointer to the ‘‘deleted object’’ no
longer points to a valid object (so reading it may give bad results) and may indeed point to memory
that has been reused for another object (so writing to it may corrupt an unrelated object). Consider
this example of very bad code:

int� p1 = new int{99};
int� p2 = p1; // potential trouble
delete p1; // now p2 doesn’t point to a valid object
p1 = nullptr; // gives a false sense of safety
char� p3 = new char{'x'}; // p3 may now point to the memory pointed to by p2
�p2 = 999; // this may cause trouble
cout << �p3 << '\n'; // may not print x

Double deletion is a problem because resource managers typically cannot track what code owns a
resource. Consider:

void sloppy() // very bad code
{

int� p = new int[1000]; // acquire memory
// ... use *p ...
delete[] p; // release memory

// ... wait a while ...

delete[] p; // but sloppy() does not own *p
}

By the second delete[], the memory pointed to by �p may have been reallocated for some other use
and the allocator may get corrupted. Replace int with string in that example, and we’ll see string’s
destructor trying to read memory that has been reallocated and maybe overwritten by other code,
and using what it read to try to delete memory. In general, a double deletion is undefined behavior
and the results are unpredictable and usually disastrous.

The reason people make these mistakes is typically not maliciousness and often not even simple
sloppiness; it is genuinely hard to consistently deallocate every allocated object in a large program
(once and at exactly the right point in a computation). For starters, analysis of a localized part of a
program will not detect these problems because an error usually involves several separate parts.
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12
Functions

Death to all fanatics!
– Paradox

• Function Declarations
Why Functions?; Parts of a Function Declaration; Function Definitions; Returning Values;
inline Functions; constexpr Functions; [[noreturn]] Functions; Local Variables

• Argument Passing
Reference Arguments; Array Arguments; List Arguments; Unspecified Number of Argu-
ments; Default Arguments

• Overloaded Functions
Automatic Overload Resolution; Overloading and Return Type; Overloading and Scope;
Resolution for Multiple Arguments; Manual Overload Resolution

• Pre- and Postconditions
• Pointer to Function
• Macros

Conditional Compilation; Predefined Macros; Pragmas
• Advice

12.1 Function Declarations
The main way of getting something done in a C++ program is to call a function to do it. Defining a
function is the way you specify how an operation is to be done. A function cannot be called unless
it has been previously declared.

A function declaration gives the name of the function, the type of the value returned (if any),
and the number and types of the arguments that must be supplied in a call. For example:

Elem� next_elem(); // no argument; return an Elem*
void exit(int); // int argument; return nothing
double sqrt(double); // double argument; return a double
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The semantics of argument passing are identical to the semantics of copy initialization (§16.2.6).
Argument types are checked and implicit argument type conversion takes place when necessary.
For example:

double s2 = sqrt(2); // call sqrt() with the argument double{2}
double s3 = sqrt("three"); // error : sqr t() requires an argument of type double

The value of such checking and type conversion should not be underestimated.
A function declaration may contain argument names. This can be a help to the reader of a pro-

gram, but unless the declaration is also a function definition, the compiler simply ignores such
names. As a return type, void means that the function does not return a value (§6.2.7).

The type of a function consists of the return type and the argument types. For class member
functions (§2.3.2, §16.2), the name of the class is also part of the function type. For example:

double f(int i, const Info&); // type: double(int,const Info&)
char& String::operator[](int); // type: char& String::(int)

12.1.1 Why Functions?
There is a long and disreputable tradition of writing very long functions – hundreds of lines long. I
once encountered a single (handwritten) function with more than 32,768 lines of code. Writers of
such functions seem to fail to appreciate one of the primary purposes of functions: to break up com-
plicated computations into meaningful chunks and name them. We want our code to be compre-
hensible, because that is the first step on the way to maintainability. The first step to comprehensi-
bility is to break computational tasks into comprehensible chunks (represented as functions and
classes) and name those. Such functions then provide the basic vocabulary of computation, just as
the types (built-in and user-defined) provide the basic vocabulary of data. The C++ standard algo-
rithms (e.g., find, sort, and iota) provide a good start (Chapter 32). Next, we can compose functions
representing common or specialized tasks into larger computations.

The number of errors in code correlates strongly with the amount of code and the complexity of
the code. Both problems can be addressed by using more and shorter functions. Using a function
to do a specific task often saves us from writing a specific piece of code in the middle of other code;
making it a function forces us to name the activity and document its dependencies. Also, function
call and return saves us from using error-prone control structures, such as gotos (§9.6) and contin-
ues (§9.5.5). Unless they are very regular in structure, nested loops are an avoidable source of
errors (e.g., use a dot product to express a matrix algorithm rather than nesting loops; §40.6).

The most basic advice is to keep a function of a size so that you can look at it in total on a
screen. Bugs tend to creep in when we can view only part of an algorithm at a time. For many pro-
grammers that puts a limit of about 40 lines on a function. My ideal is a much smaller size still,
maybe an average of 7 lines.

In essentially all cases, the cost of a function call is not a significant factor. Where that cost
could be significant (e.g., for frequently used access functions, such as vector subscripting) inlining
can eliminate it (§12.1.5). Use functions as a structuring mechanism.
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Clearly, if an argument has not been declared, the compiler does not have the information
needed to perform the standard type checking and type conversion for it. In that case, a char or a
short is passed as an int and a float is passed as a double. This is not necessarily what the program-
mer expects.

A well-designed program needs at most a few functions for which the argument types are not
completely specified. Overloaded functions, functions using default arguments, functions taking
initializer_list arguments, and variadic templates can be used to take care of type checking in most
cases when one would otherwise consider leaving argument types unspecified. Only when both the
number of arguments and the types of arguments vary and a variadic template solution is deemed
undesirable is the ellipsis necessary.

The most common use of the ellipsis is to specify an interface to C library functions that were
defined before C++ provided alternatives:

int fprintf(FILE�, const char� ...); // from <cstdio>
int execl(const char� ...); // from UNIX header

A standard set of macros for accessing the unspecified arguments in such functions can be found in
<cstdarg>. Consider writing an error function that takes one integer argument indicating the sever-
ity of the error followed by an arbitrary number of strings. The idea is to compose the error mes-
sage by passing each word as a separate C-style string argument. The list of string arguments
should be terminated by the null pointer:

extern void error(int ...);
extern char� itoa(int, char[]); // int to alpha

int main(int argc, char� argv[])
{

switch (argc) {
case 1:

error(0,argv[0],nullptr);
break;

case 2:
error(0,argv[0],argv[1],nullptr);
break;

default:
char buffer[8];
error(1,argv[0],"with",itoa(argc−1,buffer),"arguments",nullptr);

}
// ...

}

The function itoa() returns a C-style string representing its int argument. It is popular in C, but not
part of the C standard.

I always pass argv[0] because that, conventionally, is the name of the program.
Note that using the integer 0 as the terminator would not have been portable: on some imple-

mentations, the integer 0 and the null pointer do not have the same representation (§6.2.8). This
illustrates the subtleties and extra work that face the programmer once type checking has been sup-
pressed using the ellipsis.
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The int-to-string conversion function to_string() is provided by the standard library (§36.3.5).
If I didn’t hav e to mimic C style, I would further simplify the code by passing a container as a

single argument:

void error(int severity, const vector<string>& err) // almost as before
{

for (auto& s : err)
cerr << s << ' ';

cerr << '\n';
if (severity) exit(severity);

}

vector<string> arguments(int argc, char� argv[]) // package arguments
{

vector<string> res;
for (int i = 0; i!=argc; ++i)

res.push_back(argv[i]);
return res

}

int main(int argc, char� argv[])
{

auto args = arguments(argc,argv);
error((args.siz e()<2)?0:1,args);
// ...

}

The helper function, arguments(), is trivial, and main() and error() are simple. The interface between
main() and error() is more general in that it now passes all arguments. That would allow later
improvements of error(). The use of the vector<string> is far less error-prone than any use of an
unspecified number of arguments.

12.2.5 Default Arguments
A general function often needs more arguments than are necessary to handle simple cases. In par-
ticular, functions that construct objects (§16.2.5) often provide several options for flexibility. Con-
sider class complex from §3.2.1.1:

class complex {
double re, im;

public:
complex(double r, double i) :re{r}, im{i} {} // construct complex from two scalars
complex(double r) :re{r}, im{0} {} // construct complex from one scalar
complex() :re{0}, im{0} {}

// default complex: {0,0}
// ...

};

The actions of complex’s constructors are quite trivial, but logically there is something odd about
having three functions (here, constructors) doing essentially the same task. Also, for many classes,
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global ::new, the explicit cast to void� ensures that the standard-library placement function (§17.2.4)
is used to invoke the constructor, and not some user-defined operator new() for T�s. The calls to
alloc.construct() in the vector constructors are simply syntactic sugar for this placement new. Simi-
larly, the alloc.destroy() call simply hides explicit destruction (like (&�q)−>˜T()). This code is operat-
ing at a rather low lev el where writing truly general code can be difficult.

Fortunately, we don’t hav e to invent or implement uninitialized_fill(), because the standard library
provides it (§32.5.6). It is often essential to have initialization operations that either complete suc-
cessfully, having initialized every element, or fail, leaving no constructed elements behind. Conse-
quently, the standard library provides uninitialized_fill(), uninitialized_fill_n(), and uninitialized_copy()
(§32.5.6), which offer the strong guarantee (§13.2).

The uninitialized_fill() algorithm does not protect against exceptions thrown by element destruc-
tors or iterator operations (§32.5.6). Doing so would be prohibitively expensive and probably
impossible.

The uninitialized_fill() algorithm can be applied to many kinds of sequences. Consequently, it
takes a forward iterator (§33.1.2) and cannot guarantee to destroy elements in the reverse order of
their construction.

Using uninitialized_fill(), we can simplify our constructor:

template<class T, class A>
vector<T,A>::vector(siz e_type n, const T& val, const A& a) // still a bit messy

:alloc(a) // copy the allocator
{

elem = alloc.allocate(n); // get memory for elements
try {

uninitialized_fill(elem,elem+n,val); // copy elements
space = last = elem+n;

}
catch (...) {

alloc.deallocate(elem,n); // free memory
throw; // rethrow

}
}

This is a significant improvement on the first version of this constructor, but the next section
demonstrates how to further simplify it.

The constructor rethrows a caught exception. The intent is to make vector transparent to excep-
tions so that the user can determine the exact cause of a problem. All standard-library containers
have this property. Exception transparency is often the best policy for templates and other ‘‘thin’’
layers of software. This is in contrast to major parts of a system (‘‘modules’’) that generally need
to take responsibility for all exceptions thrown. That is, the implementer of such a module must be
able to list every exception that the module can throw. Achieving this may involve grouping excep-
tions into hierarchies (§13.5.2) and using catch(...) (§13.5.2.2).

13.6.2 Representing Memory Explicitly
Experience shows that writing correct exception-safe code using explicit try-blocks is more difficult
than most people expect. In fact, it is unnecessarily difficult because there is an alternative: The

From the Library of Yihong Huang





380 Exception Handling Chapter 13

This definition of the move assignment uses swap() to transfer ownership of any memory allocated
for elements. There are no objects of type T to destroy: vector_base deals with memory and leaves
concerns about objects of type T to vector.

Given vector_base, vector can be defined like this:

template<class T, class A = allocator<T> >
class vector {

vector_base<T,A> vb; // the data is here
void destroy_elements();

public:
using size_type = unsigned int;

explicit vector(size_type n, const T& val = T(), const A& = A());

vector(const vector& a); // copy constr uctor
vector& operator=(const vector& a); // copy assignment

vector(vector&& a); // move constr uctor
vector& operator=(vector&& a); // move assignment

˜vector() { destroy_elements(); }

size_type siz e() const { return vb.space−vb.elem; }
size_type capacity() const { return vb.last−vb.elem; }

void reserve(siz e_type); // increase capacity

void resize(siz e_type, T = {}); // change the number of elements
void clear() { resize(0); } // make the vector empty
void push_back(const T&); // add an element at the end

// ...
};

template<class T, class A>
void vector<T,A>::destroy_elements()
{

for (T� p = vb.elem; p!=vb.space; ++p)
p−>˜T(); // destroy element (§17.2.4)

vb.space=vb.elem;
}

The vector destructor explicitly invokes the T destructor for every element. This implies that if an
element destructor throws an exception, the vector destruction fails. This can be a disaster if it hap-
pens during stack unwinding caused by an exception and terminate() is called (§13.5.2.5). In the
case of normal destruction, throwing an exception from a destructor typically leads to resource
leaks and unpredictable behavior of code relying on reasonable behavior of objects. There is no
really good way to protect against exceptions thrown from destructors, so the library makes no
guarantees if an element destructor throws (§13.2).
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// ...

Lexer::Token Lexer::Token_stream::g et() { /* ... */ }

This ensures that the compiler will detect any inconsistencies in the types specified for a name. For
example, had get() been declared to return a Token, but defined to return an int, the compilation of
lexer.cpp would have failed with a type-mismatch error. If a definition is missing, the linker will
catch the problem. If a declaration is missing, some .cpp files will fail to compile.

File parser.cpp will look like this:

// parser.cpp:

#include "dc.h"

double Parser::prim(bool get) { /* ... */ }
double Parser::term(bool get) { /* ... */ }
double Parser::expr(bool get) { /* ... */ }

File table .cpp will look like this:

// table.cpp:

#include "dc.h"

std::map<std::string,double> Table::table;

The symbol table is a standard-library map.
File error.cpp becomes:

// error.cpp:

#include "dg.h"
// any more #includes or declarations

int Error::no_of_errors;
double Error::error(const string& s) { /* ... */ }

Finally, file main.cpp will look like this:

// main.cpp:

#include "dc.h"
#include <sstream>
#include <iostream> // redundant: in dc.h

void Driver::calculate() { /* ... */ }

int main(int argc, char� argv[]) { /* ... */ }

To be recognized as the main() of the program, main() must be a global function (§2.2.1, §15.4), so
no namespace is used here.
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// parser_impl.h:

#include "parser.h"
#include "error.h"
#include "lexer.h"

using Error::error;
using namespace Lexer;

namespace Parser { // interface for implementers
double prim(bool get);
double term(bool get);
double expr(bool get);

}

The distinction between the user interface and the interface for implementers would be even clearer
had we used a Parser_impl namespace (§14.3.3).

The user’s interface in header parser.h is #included to giv e the compiler a chance to check con-
sistency (§15.3.1).

The functions implementing the parser are stored in parser.cpp together with #include directives
for the headers that the Parser functions need:

// parser.cpp:

#include "parser_impl.h"
#include "table .h"

using Table::table;

double Parser::prim(bool get) { /* ... */ }
double Parser::term(bool get) { /* ... */ }
double Parser::expr(bool get) { /* ... */ }

Graphically, the parser and the driver’s use of it look like this:

parser.h lexer.h error.h table .h

parser_impl.h

main.cpp parser.cpp

As intended, this is a rather close match to the logical structure described in §14.3.1. To simplify
this structure, we could have #included table .h in parser_impl.h rather than in parser.cpp. Howev er,
table .h is an example of something that is not necessary to express the shared context of the parser
functions; it is needed only by their implementation. In fact, it is used by just one function, prim(),
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Where no constructor requiring arguments is declared, it is also possible to leave out the initial-
izer completely. For example:

Work alpha;

void f()
{

Work beta;
// ...

}

For this, the rules are not as clean as we might like. For statically allocated objects (§6.4.2), the
rules are exactly as if you had used {}, so the value of alpha is {"","",0}. Howev er, for local variables
and free-store objects, the default initialization is done only for members of class type, and mem-
bers of built-in type are left uninitialized, so the value of beta is {"","",unknown}.

The reason for this complication is to improve performance in rare critical cases. For example:

struct Buf {
int count;
char buf[16�1024];

};

You can use a Buf as a local variable without initializing it before using it as a target for an input
operation. Most local variable initializations are not performance critical, and uninitialized local
variables are a major source of errors. If you want guaranteed initialization or simply dislike sur-
prises, supply an initializer, such as {}. For example:

Buf buf0; // statically allocated, so initialized by default

void f()
{

Buf buf1; // leave elements uninitialized
Buf buf2 {}; // I really want to zero out those elements

int� p1 = new int; // *p1 is uninitialized
int� p2 = new int{}; // *p2 == 0
int� p3 = new int{7}; // *p3 == 7
// ...

}

Naturally, memberwise initialization works only if we can access the members. For example:

template<class T>
class Checked_pointer { // control access to T* member
public:

T& operator�(); // check for nullptr and return value
// ...
};

Checked_pointer<int> p {new int{7}}; // error : can’t access p.p

If a class has a private non-static data member, it needs a constructor to initialize it.
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17.3.2 Initialization Using Constructors
Where memberwise copy is not sufficient or desirable, a constructor can be defined to initialize an
object. In particular, a constructor is often used to establish an invariant for its class and to acquire
resources necessary to do that (§17.2.1).

If a constructor is declared for a class, some constructor will be used for every object. It is an
error to try to create an object without a proper initializer as required by the constructors. For
example:

struct X {
X(int);

};

X x0; // error : no initializer
X x1 {}; // error : empty initializer
X x2 {2}; // OK
X x3 {"two"}; // error : wrong initializer type
X x4 {1,2}; // error : wrong number of initializers
X x5 {x4}; // OK: a copy constr uctor is implicitly defined (§17.6)

Note that the default constructor (§17.3.3) disappears when you define a constructor requiring argu-
ments; after all, X(int) states that an int is required to construct an X. Howev er, the copy constructor
does not disappear (§17.3.3); the assumption is that an object can be copied (once properly con-
structed). Where the latter might cause problems (§3.3.1), you can specifically disallow copying
(§17.6.4).

I used the {} notation to make explicit the fact that I am initializing. I am not (just) assigning a
value, calling a function, or declaring a function. The {} notation for initialization can be used to
provide arguments to a constructor wherever an object can be constructed. For example:

struct Y : X {
X m {0}; // provide default initializer for member m
Y(int a) :X{a}, m{a} { }; // initialize base and member (§17.4)
Y() : X{0} { }; // initialize base and member

};

X g {1}; // initialize global var iable

void f(int a)
{

X def {}; // error : no default value for X
Y de2 {}; // OK: use default constructor
X� p {nullptr};
X var {2}; // initialize local var iable
p = new X{4}; // initialize object on free store
X a[] {1,2,3}; // initialize array elements
vector<X> v {1,2,3,4}; // initialize vector elements

}
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For this reason, {} initialization is sometimes referred to as universal initialization: the notation can
be used everywhere. In addition, {} initialization is uniform: wherever you initialize an object of
type X with a value v using the {v} notation, the same value of type X (X{v}) is created.

The = and () notations for initialization (§6.3.5) are not universal. For example:

struct Y : X {
X m;
Y(int a) : X(a), m=a { }; // syntax error: can’t use = for member initialization

};

X g(1); // initialize global var iable

void f(int a)
{

X def(); // function returning an X (surpr ise!?)
X� p {nullptr};
X var = 2; // initialize local var iable
p = new X=4; // syntax error: can’t use = for new
X a[](1,2,3); // error : can’t use () for array initialization
vector<X> v(1,2,3,4); // error : can’t use () for list elements

}

The = and () notations for initialization are not uniform either, but fortunately the examples of that
are obscure. If you insist on using = or () initialization, you have to remember where they are
allowed and what they mean.

The usual overload resolution rules (§12.3) apply for constructors. For example:

struct S {
S(const char�);
S(double�);

};

S s1 {"Napier"}; // S::S(const char*)
S s2 {new double{1.0}}; // S::S(double*);
S s3 {nullptr}; // ambiguous: S::S(const char*) or S::S(double*)?

Note that the {}-initializer notation does not allow narrowing (§2.2.2). That is another reason to
prefer the {} style over () or =.

17.3.2.1 Initialization by Constructors

Using the () notation, you can request to use a constructor in an initialization. That is, you can
ensure that for a class, you will get initialization by constructor and not get the memberwise initial-
ization or initializer-list initialization (§17.3.4) that the {} notation also offers. For example:

struct S1 {
int a,b; // no constructor

};
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18.4.3 Ambiguities
An assignment of a value of type V to an object of class X is legal if there is an assignment operator
X::operator=(Z) so that V is Z or there is a unique conversion of V to Z. Initialization is treated equiv-
alently.

In some cases, a value of the desired type can be constructed by repeated use of constructors or
conversion operators. This must be handled by explicit conversions; only one level of user-defined
implicit conversion is legal. In some cases, a value of the desired type can be constructed in more
than one way; such cases are illegal. For example:

class X { /* ... */ X(int); X(const char�); };
class Y { /* ... */ Y(int); };
class Z { /* ... */ Z(X); };

X f(X);
Y f(Y);

Z g(Z);

void k1()
{

f(1); // error : ambiguous f(X(1)) or f(Y(1))?
f(X{1}); // OK
f(Y{1}); // OK

g("Mack"); // error : two user-defined conversions needed; g(Z{X{"Mack"}}) not tried
g(X{"Doc"}); // OK: g(Z{X{"Doc"}})
g(Z{"Suzy"}); // OK: g(Z{X{"Suzy"}})

}

User-defined conversions are considered only if a call cannot be resolved without them (i.e., using
only built-in conversions). For example:

class XX { /* ... */ XX(int); };

void h(double);
void h(XX);

void k2()
{

h(1); // h(double{1}) or h(XX{1})? h(double{1})!
}

The call h(1) means h(double(1)) because that alternative uses only a standard conversion rather than
a user-defined conversion (§12.3).

The rules for conversion are neither the simplest to implement, nor the simplest to document,
nor the most general that could be devised. They are, however, considerably safer, and the resulting
resolutions are typically less surprising than alternatives. It is far easier to manually resolve an
ambiguity than to find an error caused by an unsuspected conversion.
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The insistence on strict bottom-up analysis implies that the return type is not used in overload-
ing resolution. For example:

class Quad {
public:

Quad(double);
// ...

};

Quad operator+(Quad,Quad);

void f(double a1, double a2)
{

Quad r1 = a1+a2; // double-precision floating-point add
Quad r2 = Quad{a1}+a2; // force quad arithmetic

}

The reason for this design choice is partly that strict bottom-up analysis is more comprehensible
and partly that it is not considered the compiler’s job to decide which precision the programmer
might want for the addition.

Once the types of both sides of an initialization or assignment have been determined, both types
are used to resolve the initialization or assignment. For example:

class Real {
public:

operator double();
operator int();
// ...

};

void g(Real a)
{

double d = a; // d = a.double();
int i = a; // i = a.int();

d = a; // d = a.double();
i = a; // i = a.int();

}

In these cases, the type analysis is still bottom-up, with only a single operator and its argument
types considered at any one time.

18.5 Advice
[1] Define operators primarily to mimic conventional usage; §18.1.
[2] Redefine or prohibit copying if the default is not appropriate for a type; §18.2.2.
[3] For large operands, use const reference argument types; §18.2.4.
[4] For large results, use a move constructor; §18.2.4.
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[5] Prefer member functions over nonmembers for operations that need access to the representa-
tion; §18.3.1.

[6] Prefer nonmember functions over members for operations that do not need access to the rep-
resentation; §18.3.2.

[7] Use namespaces to associate helper functions with ‘‘their’’ class; §18.2.5.
[8] Use nonmember functions for symmetric operators; §18.3.2.
[9] Use member functions to express operators that require an lvalue as their left-hand operand;

§18.3.3.1.
[10] Use user-defined literals to mimic conventional notation; §18.3.4.
[11] Provide ‘‘set() and get() functions’’ for a data member only if the fundamental semantics of a

class require them; §18.3.5.
[12] Be cautious about introducing implicit conversions; §18.4.
[13] Avoid value-destroying (‘‘narrowing’’) conversions; §18.4.1.
[14] Do not define the same conversion as both a constructor and a conversion operator; §18.4.3.
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The global function f1() has a similar property because implicit conversions are not used for non-
const reference arguments (§7.7). However, conversions may be applied to the arguments of f2()
and f3():

void h()
{

f1(99); // error : f1(X(99)) not tried: non-const X& argument
f2(99); // OK: f2(X(99)); const X& argument
f3(99); // OK: f3(X(99)); X argument

}

An operation modifying the state of a class object should therefore be a member or a function tak-
ing a non-const reference argument (or a non-const pointer argument).

Operators that modify an operand (e.g., =, �=, and ++) are most naturally defined as members for
user-defined types. Conversely, if implicit type conversion is desired for all operands of an opera-
tion, the function implementing it must be a nonmember function taking a const reference argu-
ment or a non-reference argument. This is often the case for the functions implementing operators
that do not require lvalue operands when applied to fundamental types (e.g., +, −, and ||). However,
such operators often need access to the representations of their operand class. Consequently, binary
operators are the most common source of friend functions.

Unless type conversions are defined, there appears to be no compelling reason to choose a
member over a friend taking a reference argument, or vice versa. In some cases, the programmer
may have a preference for one call syntax over another. For example, most people seem to prefer
the notation m2=inv(m) for producing a inverted Matrix from m to the alternative m2=m.inv(). On the
other hand, if inv() inverts m itself, rather than producing a new Matrix that is the inverse of m, it
should be a member.

All other things considered equal, implement operations that need direct access to a representa-
tion as member functions:

• It is not possible to know if someone someday will define a conversion operator.
• The member function call syntax makes it clear to the user that the object may be modified;

a reference argument is far less obvious.
• Expressions in the body of a member can be noticeably shorter than the equivalent expres-

sions in a global function; a nonmember function must use an explicit argument, whereas
the member can use this implicitly.

• Member names are local to a class, so they tend to be shorter than the names of nonmember
functions.

• If we hav e defined a member f() and we later feel the need for a nonmember f(x), we can
simply define it to mean x.f().

Conversely, operations that do not need direct access to a representation are often best represented
as nonmember functions, possibly in a namespace that makes their relationship with the class
explicit (§18.3.6).
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Chunk� allocated;
Link� free;
Link� get_free();
Link� head;

};

The definitions of the public functions are pretty strainghtforward:

template<class T>
void List<T>::insert(T val)
{

Link� lnk = get_free();
lnk−>val = val;
lnk−>next = head;
head = lnk;

}

template<class T>
T List<T>::g et()
{

if (head == 0)
throw Underflow{}; // Underflow is my exception class

Link� p= head;
head = p−>next;
p−>next = free;
free = p;
return p−>val;

}

As is common, the definition of the supporting (here, private) functions are a bit more tricky:

template<class T>
typename List<T>::Link� List<T>::get_free()
{

if (free == 0) {
// ... allocate a new chunk and place its Links on the free list ...

}
Link� p = free;
free = free−>next;
return p;

}

The List<T> scope is entered by saying List<T>:: in a member function definition. However, because
the return type of get_free() is mentioned before the name List<T>::get_free() is mentioned, the full
name List<T>::Link must be used instead of the abbreviation Link. The alternative is to use the suffix
notation for return types (§12.1.4):
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template<class T>
auto List<T>::get_free() −> Link�
{

// ...
}

Nonmember functions (except friends) do not have such access:

template<typename T>
void would_be_meddler(List<T>� p)
{

List<T>::Link� q = 0; // error : List<T>::Link is private
// ...
q = p−>free; // error : List<T>::free is private
// ...
if (List<T>::Chunk::chunk_siz e > 31) { // error : List<T>::Chunk::chunk_size is private

// ...
}

}

In a class, members are by default private; in a struct, members are by default public (§16.2.4).
The obvious alternative to using a member type is to place the type in the surrounding name-

space. For example:

template<class T>
struct Link2 {

T val;
Link2� next;

};

template<class T>
class List {
private:

Link2<T>� free;
// ...

};

Link is implicitly parameterized with List<T>’s parameter T. For Link2, we must make that explicit.
If a member type does not depend on all the template class’s parameters, the nonmember ver-

sion can be preferable; see §23.4.6.3.
If the nested class is not generally useful by itself and the enclosing class needs access to its

representation, declaring the member class a friend (§19.4.2) may be a good idea:

template<class T> class List;

template<class T>
class Link3 {

friend class List<T>; // only List<T> can access Link<T>
T val;
Link3� next;

};
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template<class T>
class List {
private:

Link3<T>� free;
// ...

};

A compiler may reorder sections of a class with separate access specifiers (§8.2.6). For example:

class S {
public:

int m1;
public:

int m2;
};

The compiler may decide for m2 to precede m1 in the layout of an S object. Such reordering could
come as a surprise to the programmer and is implementation-dependent, so don’t use multiple
access specifiers for data members without good reason.

20.5.1 protected Members
When designing a class hierarchy, we sometimes provide functions designed to be used by imple-
menters of derived classes but not by the general user. For example, we may provide an (efficient)
unchecked access function for derived class implementers and (safe) checked access for others.
Declaring the unchecked version protected achieves that. For example:

class Buffer {
public:

char& operator[](int i); // checked access
// ...

protected:
char& access(int i); // unchecked access
// ...

};

class Circular_buffer : public Buffer {
public:

void reallocate(char� p, int s); // change location and size
// ...

};

void Circular_buffer::reallocate(char� p, int s)// change location and size
{

// ...
for (int i=0; i!=old_sz; ++i)

p[i] = access(i); // no redundant checking
// ...

}
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We can test by making a vector of pairs of pointers to ensure that run-time type resolution is used:

void test(Expr& e, Stmt& s)
{

vector<pair<Node�,Visitor�>> vn {&e,&do1}, {&s,&do1}, {&e,&do2}, {&s,&do2}};
for (auto p : vn)

p.first−>accept(�p.second);
}

We get:

do1 to Expr
do1 to Stmt
do2 to Expr
do2 to Stmt

As opposed to the simple double dispatch, the visitor pattern is heavily used in real-world program-
ming. It is only mildly intrusive (the accept() function), and many variations on the basic idea are
used. However, many operations on class hierarchies are hard to express as visitors. For example,
an operation that needs access to multiple nodes of different types in a graph cannot be trivially
implemented as a visitor. So, I consider the visitor pattern an inelegant workaround. Alternatives
exist, for example, [Solodkyy,2012], but not in plain C++11.

Most alternatives to visitors in C++ are based on the idea of explicit iteration over a homoge-
neous data structure (e.g., a vector or a graph of nodes containing pointers to polymorphic types).
At each element or node, a call of a virtual function can perform the desired operation, or some
optimization based on stored data can be applied (e.g., see §27.4.2).

22.4 Construction and Destruction
A class object is more than simply a region of memory (§6.4). A class object is built from ‘‘raw
memory’’ by its constructors, and it reverts to ‘‘raw memory’’ as its destructors are executed. Con-
struction is bottom-up, destruction is top-down, and a class object is an object to the extent that it
has been constructed or destroyed. This order is necessary to ensure that an object is not accessed
before it has been initialized. It is unwise to try to access base and member objects early or out of
order through ‘‘clever’’ pointer manipulation (§17.2.3). The order of construction and destruction
is reflected in the rules for RTTI, exception handling (§13.3), and virtual functions (§20.3.2).

It is unwise to rely on details of the order of construction and destruction, but you can observe
that order by calling virtual functions, dynamic_cast (§22.2), or typeid (§22.5) at a point where the
object isn’t complete. At such a point in a constructor, the (dynamic) type of the object reflects
only what is constructed so far. For example, if the constructor for Component in the hierarchy
from §22.2.2 calls a virtual function, it will invoke a version defined for Storable or Component, but
not one from Receiver, Transmitter, or Radio. At that point of construction, the object isn’t yet a
Radio. Similarly, calling a virtual function from a destructor will reflect only what is still not
destroyed. It is best to avoid calling virtual functions during construction and destruction.
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void f(Non_poly& npr, Poly& pr)
{

cout << typeid(npr).name() << '\n'; // writes something like "Non_poly"
cout << typeid(pr).name() << '\n'; // name of Poly or a class derived from Poly

}

void g()
{

D1 d1;
D2 d2;
f(d2,d1); // writes "Non_poly D1"
f(�static_cast<Poly�>(nullptr),�static_cast<Null_poly�>(nullptr)); // oops!

}

That last call will print just Non_poly (because typeid(npr) is not evaluated) before throwing a
bad_typeid.

The definition of type_info looks like this:

class type_info {
// data

public:
virtual ˜type_info(); // is polymorphic

bool operator==(const type_info&) const noexcept; // can be compared
bool operator!=(const type_info&) const noexcept;

bool before(const type_info&) const noexcept; // ordering
size_t hash_code() const noexcept; // for use by unordered_map and the like
const char� name() const noexcept; // name of type

type_info(const type_info&) = delete; // prevent copying
type_info& operator=(const type_info&) = delete; // prevent copying

};

The before() function allows type_infos to be sorted. In particular, it allows type_ids to be used as
keys for ordered containers (such as map). There is no relation between the relationships defined
by before and inheritance relationships. The hash_code() function allows type_ids be used as keys
for hash tables (such as unordered_map).

It is not guaranteed that there is only one type_info object for each type in the system. In fact,
where dynamically linked libraries are used, it can be hard for an implementation to avoid duplicate
type_info objects. Consequently, we should use == on type_info objects to test equality, rather than
== on pointers to such objects.

We sometimes want to know the exact type of an object so as to perform some service on the
whole object (and not just on one of its bases). Ideally, such services are presented as virtual func-
tions so that the exact type needn’t be known. In some cases, no common interface can be assumed
for every object manipulated, so the detour through the exact type becomes necessary (§22.5.1).
Another, much simpler use has been to obtain the name of a class for diagnostic output:
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have preferred for a constraints check to be guaranteed to be done by the compiler at the
point of the first call, but that is impossible without language changes.

• We can forget to insert a constraints check (especially for a function template).
• The compiler does not check that a template implementation uses only the properties speci-

fied in its concepts. Thus, a template implementation may pass the constraints check, yet
still fail to type check.

• We do not specify semantic properties in a way that a compiler can understand (e.g., we use
comments).

Adding constraints checks makes the requirements on template arguments explicit, and if a con-
straints check is well designed, it leads to more comprehensible error messages. If we forget to
insert constraints checks, we are back to the ordinary type checking of the code generated by tem-
plate instantiation. That can be unfortunate, but it is not disastrous. These constraints checks are a
technique for making checking of designs based on concepts more robust, rather than an integral
part of the type system.

If we want to, we can place constraints checks almost anywhere. For example, to guarantee that
a particular type is checked against a particular concept, we could place constraints checks in a
namespace scope (e.g., the global scope). For example:

static_assert(Ordered<std::string>,"std::string is not Ordered"); // will succeed
static_assert(Ordered<String<char>>,"String<char> is not Ordered"); // will fail

The first static_assert checks if the standard string is Ordered (it is, because it provides ==, !=, and
<). The second checks if our String is Ordered (it is not, because I ‘‘forgot’’ to define <). Using
such a global check will perform the constraints check independently of whether we actually use
that particular specialization of a template in the program. Depending on our aims, that can be an
advantage or a bother. Such a check forces type checking to be done at a specific point in the pro-
gram; that is usually good for error isolation. Also, such checks can help unit testing. However, for
programs using a number of libraries, explicit checks quickly become unmanageable.

Being Regular is an ideal for a type. We can copy objects of regular types, put them into vectors
and arrays, compare them, etc. If a type is Ordered, we can also use its objects in sets, sort
sequences of such objects, etc. So, we go back and improve our String to make it Ordered. In par-
ticular, we add < to provide a lexicographical ordering:

template<typename C>
bool operator<(const String<C>& s1, const String<C>& s2)
{

static_assert(Ordered<C>(),"String's character type not ordered");
bool eq = true;
for (int i=0; i!=s1.size() && i!=s2.size(); ++i) {

if (s2[i]<s1[i]) return false;
if (s1[i]<s2[i]) eq = false; // not s1==s2

}
if (s2.size()<s1.siz e()) return false; // s2 is shorter than s1
if (s1.size()==s2.siz e() && eq) return false; // s1==s2
return true;

}
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24.4.1 Axioms
As in mathematics, an axiom is something we can’t prove. It is something we assume to be true.
In the context of requirements for template arguments, we use ‘‘axiom’’ in that sense to refer to
semantic properties. We use an axiom to state what a class or an algorithm assumes about its set of
inputs. An axiom, however expressed, represents an algorithm’s or class’s expectations of (assump-
tions about) its arguments. We cannot in general test to see whether an axiom holds for values of a
type (that is one reason we refer to them as axioms). Furthermore, an axiom is only required to
hold for the values actually used by an algorithm. For example, an algorithm can carefully avoid
dereferencing null pointers or copying a floating-point NaN. If so, it could have axioms that
require pointers to be dereferenceable and floating-point values to be copyable. Alternatively,
axioms can be written with the general assumption that singular values (e.g., NaN and nullptr) vio-
late some precondition, so that they need not be considered.

C++ does not (currently) have any way of expressing axioms, but as for concepts, we can make
our idea of a concept a bit more concrete than a comment or some text in a design document.

Consider how we might express some of the key semantic requirements for a type to be regular:

template<typename T>
bool Copy_equality(T x) // semantics of copy constr uction
{

return T{x}==x; // a copy compares equal to what it is a copy of
}

template<typename T>
bool Copy_assign_equality(T x, T& y) // semantics of assignment
{

return (y=x, y==x); // the result of an assignment compares equal to the source of the assignment
}

In other words, copy operations make copies.

template<typename T>
bool Move_effect(T x, T& y) // semantics of move
{

return (x==y ? T{std::move(x)}==y) : true) && can_destroy(y);
}

template<typename T>
bool Move_assign_effect(T x, T& y, T& z) // semantics of move assignment
{

return (y==z ? (x=std::move(y), x==z)) : true) && can_destroy(y);
}

In other words, a move operation yields a value that compares equal to whatever the source of the
move operation compared equal to, and the source of the move can be destroyed.

These axioms are represented as executable code. We might use them for testing, but most
importantly, we hav e to think harder to express them than we would have to simply write a com-
ment. The resulting axioms are more precisely stated than would have been the case in ‘‘ordinary
English.’’ Basically, we can express such pseudo axioms using first-order predicate logic.
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24.4.2 Multi-argument Concepts
When looking at a single-argument concept and applying it to a type, it looks very much as if we
are doing conventional type checking and that the concept is the type of a type. That’s part of the
story, but only a part. Often, we find that relationships among argument types are essential for cor-
rect specification and use. Consider the standard-library find() algorithm:

template<typename Iter, typename Val>
Iter find(Iter b, Iter e, Val x);

The Iter template argument must be an input iterator, and we can (relatively) easily define a con-
straints-check template for that concept.

So far, so good, but find() depends critically on comparing x to elements of the sequence [b:e).
We need to specify that comparison is required; that is, we need to state that Val and and the value
type of the input iterator are equality comparable. That requires a two-argument version of Equal-
ity_comparable:

template<typename A, typename B>
constexpr bool Equality_comparable(A a, B b)
{

return Common<T, U>()
&& Totally_ordered<T>()
&& Totally_ordered<U>()
&& Totally_ordered<Common_type<T,U>>()
&& Has_less<T,U>() && Boolean<Less_result<T,U>>()
&& Has_less<U,T>() && Boolean<Less_result<U,T>>()
&& Has_greater<T,U>() && Boolean<Greater_result<T,U>>()
&& Has_greater<U,T>() && Boolean<Greater_result<U,T>>()
&& Has_less_equal<T,U>() && Boolean<Less_equal_result<T,U>>()
&& Has_less_equal<U,T>() && Boolean<Less_equal_result<U,T>>()
&& Has_greater_equal<T,U>() && Boolean<Greater_equal_result<T,U>>()
&& Has_greater_equal<U,T>() && Boolean<Greater_equal_result<U,T>>();

};

This is rather verbose for a simple concept. However, I wanted to be explicit about all of the opera-
tors and about the symmetry of their use rather than burying the complexity in a generalization.

Given that, we can define find():

template<typename Iter, typename Val>
Iter find(Iter b, Iter e, Val x)
{

static_assert(Input_iterator<Iter>(),"find() requires an input iterator");
static_assert(Equality_comparable<Value_type<Iter>,Val>(),

"find()'s iterator and value arguments must match");

while (b!=e) {
if (�b==x) return b;
++b;

}
return b;

}
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Multi-argument concepts are particularly common and useful when specifying generic algorithms.
This is also the area where you find the greatest number of concepts and the greatest need to spec-
ify new concepts (as opposed to picking ‘‘standard ones’’ from a catalog of common concepts).
The variations among well-defined types appear to be somewhat more limited than the variations
among algorithms’ requirements on their arguments.

24.4.3 Value Concepts
Concepts can express arbitrary (syntactic) requirements on a set of template arguments. In particu-
lar, a template argument can be an integer value, so concepts can take integer arguments. For
example, we can write a constraints check to test that a value template argument is small:

template<int N>
constexpr bool Small_size()
{

return N<=8;
}

A more realistic example would be a concept for which the numeric argument was just one among
others. For example:

constexpr int stack_limit = 2048;

template<typename T,int N>
constexpr bool Stackable() // T is regular and N elements of T can fit on a small stack
{

return Regular<T>() && sizeof(T)�N<=stack_limit;
}

This implements a notion of ‘‘small enough to be stack allocated.’’ It might be used like this:

template<typename T, int N>
struct Buffer {

// ...
};

template<typename T, int N>
void fct()
{

static_assert(Stackable<T,N>(),"fct() buffer won't fit on stack");
Buffer<T,N> buf;
// ...

}

Compared to the fundamental concepts for types, value concepts tend to be small and ad hoc.

24.4.4 Constraints Checks
The constraints checks used in this book can be found on the book’s support site. They are not part
of a standard, and I hope that in the future they will be replaced by a proper language mechanism.
However, they can be useful for thinking about template and type design and reflect the de facto
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There are more alternatives, but consider:

template<typename N>
struct Node_base { // doesn’t know about Val (the user data)

N� left_child;
N� right_child;

Node_base();

void add_left(N� p)
{

if (left_child==nullptr)
left_child = p;

else
// ...

}
// ...

};

template<typename Val>
struct Node : Node_base<Node<Val>> { // use derived class as part of its own base

Val v;
Node(Val vv);
// ...

};

Here, we pass the derived class Node<Val> as a template argument to its own base (Node_base).
That allows Node_base to use Node<Val> in its interfaces without even knowing its real name!

Note that the layout of a Node is compact. For example, a Node<double> will look roughly
equivalent to this:

struct Node_base_double {
double val;
Node_base_double� left_child;
Node_base_double� right_child;

};

Unfortunately, with this design, a user has to be aware of Node_base’s operations and the structure
of the resulting tree. For example:

using My_node = Node<double>;

void user(const vector<double>& v)
{

My_node root;
int i = 0;

for (auto x : v) {
auto p = new My_node{x};
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if (i++%2) // choose where to insert
root.add_left(p);

else
root.add_right(p);

}
}

However, it is not easy for a user to keep the structure of a tree reasonable. Typically, we would
like to let the tree take care of that by implementing a tree-balancing algorithm. However, to bal-
ance a tree so that you can search it efficiently, the balancer needs to know the user’s values.

How do we add a balancer to our design? We could hardwire the balancing strategy into
Node_base and let Node_base ‘‘peek’’ at the user data. For example, a balanced tree implementa-
tion, such as the standard-library map, (by default) requires that a value type provides a less-than
operation. That way, the Node_base operations can simply use <:

template<typename N>
struct Node_base {

static_assert(Totally_ordered<N>(), "Node_base: N must have a <");

N� left_child;
N� right_child;
Balancing_info bal;

Node_base();

void insert(N& n)
{

if (n<left_child)
// ... do something ...

else
// ... do something else ...

}
// ...

};

This works nicely. In fact, the more information about nodes we build into the Node_base, the sim-
pler the implementation becomes. In particular, we could parameterize the Node_base with a value
type rather than a node type (as is done for std::map), and we would have the tree in a single com-
pact package. However, doing so doesn’t address the fundamental question we are trying to
address here: how to combine information from several separately specified sources. Writing
ev erything in one place dodges that problem.

So let us assume that the user will want to manipulate Nodes (e.g., move a node from one tree to
another), so that we can’t simply store user data into an anonymous node. Let us further assume
that we would like to be able to use a variety of balancing algorithms, so that we need to make the
balancer an argument. These assumptions force us to face the fundamental question. The simplest
solution is to let Node combine the value type with a balancer type. However, Node doesn’t need to
use the balancer, so it just passes it on to Node_base:
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template<typename Val, typename Balance>
struct Search_node : public Node_base<Search_node<Val, Balance>, Balance>
{

Val val; // user data
search_node(Val v): val(v) {}

};

Balance is mentioned twice here because it is part of the node type and because Node_base needs to
make an object of type Balance:

template<typename N, typename Balance>
struct Node_base : Balance {

N� left_child;
N� right_child;

Node_base();

void insert(N& n)
{

if (this−>compare(n,left_child)) // use compare() from Balance
// ... do something ...

else
// ... do something else ...

}
// ...

};

I could have used Balance to define a member, rather than using it as a base. However, some impor-
tant balancers require no per-node data, so by making Balance a base, I benefit from the empty-base
optimization. The language guarantees that if a base class has no non-static data members, no
memory will be allocated for it in an object of derived class (§iso.1.8). Also, this design is with
minor stylistic differences that of a real binary tree framework [Austern,2003]. We might use these
classes like this:

struct Red_black_balance {
// data and operations needed to implement red-black trees

};

template<typename T>
using Rbnode = Search_node<T,Red_black_balance>; // type alias for red-black trees

Rbnode<double> my_root; // a red-black tree of doubles

using My_node = Rb_node<double>;

void user(const vector<double>& v)
{

for (auto x : v)
root.inser t(�new My_node{x});

}
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The layout of a node is compact, and we can easily inline all performance-critical functions. What
we achieved by the slightly elaborate set of definitions was type safety and ease of composition.
This elaboration delivers a performance advantage compared to every approach that introduces a
void� into the data structure or function interfaces. Such a use of void� disables valuable type-based
optimization techniques. Choosing a low-level (C-style) programming technique in the key parts of
a balanced binary tree implementation implies a significant run-time cost.

We passed the balancer as a separate template argument:

template<typename N, typename Balance>
struct Node_base : Balance {

// ...
};

template<typename Val, typename Balance>
struct Search_node

: public Node_base<Search_node<Val, Balance>, Balance>
{

// ...
};

Some find this clear, explicit, and general; others find it verbose and confusing. The alternative is
to make the balancer an implicit argument in the form of an associated type (a member type of
Search_node):

template<typename N>
struct Node_base : N::balance_type { // use N’s balance_type

// ...
};

template<typename Val, typename Balance>
struct Search_node

: public Node_base<Search_node<Val,Balance>>
{

using balance_type = Balance;
// ...

};

This technique is heavily used in the standard library to minimize explicit template arguments.
The technique of deriving from a base class is very old. It was mentioned in the ARM (1989)

and is sometimes referred to as the Barton-Nackman trick after an early use in mathematical soft-
ware [Barton,1994]. Jim Coplien called it the curiously recurring template pattern (CRTP)
[Coplien,1995].

27.4.2 Linearizing Class Hierarchies
The Search_node example from §27.4.1 uses its template to compress its representation and to
avoid using void�. The techniques are general and very useful. In particular, many programs that
deal with trees rely on it for type safety and performance. For example, the ‘‘Internal Program
Representation’’ (IPR) [DosReis,2011] is a general and systematic representation of C++ code as
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template<typename T, typename Vec>
void add_list(const T� first, const T� last, Vec& vec)
{

vec.insert(vec.end(),first,last);
}

I use vec.insert(vec.end(),first,last) because there is no push_back() that takes a sequence argument.

29.4.5 Matrix Access
A Matrix provides access by row, column, slice (§29.4.1), and element (§29.4.3). A row() or col-
umn() operation returns a Matrix_ref<T,N−1>, the () subscript operation with integers returns a T&, and
the () subscript operation with slices returns a Matrix<T,N>.

The row of a Matrix<T,N> is a Matrix_ref<T,N−1> as long as 1<N:

template<typename T, siz e_t N>
Matrix_ref<T,N−1> Matrix<T,N>::row(siz e_t n)
{

assert(n<rows());
Matrix_slice<N−1> row;
Matrix_impl::slice_dim<0>(n,desc,row);
return {row,data()};

}

We need specializations for N==1 and N==0:

template<typename T>
T& Matrix<T,1>::row(siz e_t i)
{

return &elems[i];
}

template<typename T>
T& Matrix<T,0>::row(siz e_t n) = delete;

Selecting a column() is essentially the same as selecting a row(). The difference is simply in the
construction of the Matrix_slice:

template<typename T, siz e_t N>
Matrix_ref<T,N−1> Matrix<T,N>::column(siz e_t n)
{

assert(n<cols());
Matrix_slice<N−1> col;
Matrix_impl::slice_dim<1>(n,desc,col);
return {col,data()};

}

The const versions are equivalent.
Requesting_element() and Requesting_slice() are concepts for a set of integers used for subscript-

ing with a set of integers and subscripting by a slice, respectively (§29.4.5). They check that a
sequence of access-function arguments are of suitable types for use as subscripts.
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enum class errc Enumerators (§iso.19.5) (continued, continues)
broken_pipe EPIPE
connection_aborted ECONNABORTED
connection_already_in_progress EALREADY
connection_refused ECONNREFUSED
connection_reset ECONNRESET
cross_device_link EXDEV
destination_address_required EDESTADDRREQ
device_or_resource_busy EBUSY
directory_not_empty ENOTEMPTY
executable_format_error ENOEXEC
file_exists EEXIST
file_too_large EFBIG
filename_too_long ENAMETOOLONG
function_not_supported ENOSYS
host_unreachable EHOSTUNREACH
identifier_removed EIDRM
illegal_byte_sequence EILSEQ
inappropriate_io_control_operation ENOTTY
interrupted EINTR
invalid_argument EINVAL
invalid_seek ESPIPE
io_error EIO
is_a_directory EISDIR
message_siz e EMSGSIZE
network_down ENETDOWN
network_reset ENETRESET
network_unreachable ENETUNREACH
no_buffer_space ENOBUFS
no_child_process ECHILD
no_link ENOLINK
no_lock_available ENOLCK
no_message ENOMSG
no_message_available ENODATA
no_protocol_option ENOPROTOOPT
no_space_on_device ENOSPC
no_stream_resources ENOSR
no_such_device ENODEV
no_such_device_or_address ENXIO
no_such_file_or_director y ENOENT
no_such_process ESRCH
not_a_directory ENOTDIR
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enum class errc Enumerators (§iso.19.5) (continued)
not_a_socket ENOTSOCK
not_a_stream ENOSTR
not_connected ENOTCONN
not_enough_memory ENOMEM
not_supported ENOTSUP
operation_canceled ECANCELED
operation_in_progress EINPROGRESS
operation_not_permitted EPERM
operation_not_supported EOPNOTSUPP
operation_would_block EWOULDBLOCK
owner_dead EOWNERDEAD
permission_denied EACCES
protocol_error EPROTO
protocol_not_suppor ted EPROTONOSUPPORT
read_only_file_system EROFS
resource_deadlock_would_occur EDEADLK
resource_unavailable_tr y_again EAGAIN
result_out_of_range ERANGE
state_not_recoverable ENOTRECOVERABLE
stream_timeout ETIME
text_file_busy ETXTBSY
timed_out ETIMEDOUT
too_many_files_open EMFILE
too_many_files_open_in_system ENFILE
too_many_links EMLINK
too_many_symbolic_link_levels ELOOP
value_too_large EOVERFLOW
wrong_protocol_type EPROTOTYPE

These codes are valid for the "system" category: system_category(). For systems supporting
POSIX-like facilities, they are also valid for the "generic" category: generic_categor y().

The POSIX macros are integers whereas the errc enumerators are of type errc. For example:

void problem(errc e)
{

if (e==EPIPE) { // error : no conversion of errc to int
// ...

}

if (e==broken_pipe) { // error : broken_pipe not in scope
// ...

}
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if (e==errc::broken_pipe) { // OK
// ...

}
}

30.4.3.7 future_errc Error Codes

Standard error_codes for the future_category() are defined by enum class future_errc:

enum class future_errc Enumerators (§iso.30.6.1)
broken_promise 1
future_already_retrieved 2
promise_already_satisfied 3
no_state 4

These codes are valid for the "future" category: future_category().

30.4.3.8 io_errc Error Codes

Standard error_codes for the iostream_category() are defined by enum class io_errc:

enum class io_errc Enumerator (§iso.27.5.1)
stream 1

This code is valid for the "iostream" category: iostream_category().

30.5 Advice
[1] Use standard-library facilities to maintain portability; §30.1, §30.1.1.
[2] Use standard-library facilities to minimize maintenance costs; §30.1.
[3] Use standard-library facilities as a base for more extensive and more specialized libraries;

§30.1.1.
[4] Use standard-library facilities as a model for flexible, widely usable software; §30.1.1.
[5] The standard-library facilities are defined in namespace std and found in standard-library

headers; §30.2.
[6] A C standard-library header X.h is presented as a C++ standard-library header in <cX>; §30.2.
[7] Do not try to use a standard-library facility without #includeing its header; §30.2.
[8] To use a range-for on a built-in array, #include<iterator>; §30.3.2.
[9] Prefer exception-based error handling over return-code-based error handling; §30.4.
[10] Always catch exception& (for standard-library and language support exceptions) and ... (for

unexpected exceptions); §30.4.1.
[11] The standard-library exception hierarchy can be (but does not have to be) used for a user’s

own exceptions; §30.4.1.1.
[12] Call terminate() in case of serious trouble; §30.4.1.3.
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31.3.7 List Operations
Containers provide list operations:

List Operations
q=c.insert(p,x) Add x before p; use copy or move
q=c.insert(p,n,x) Add n copies of x before p; if c is an

associative container, p is a hint of where to start searching
q=c.insert(p,first,last) Add elements from [first:last) before p;

not for associative containers
q=c.insert(p,{elem}) Add elements from initializer_list {elem} before p; p is a hint of

where to start searching for a place to put the new element;
for ordered associative containers only

q=c.emplace(p,args) Add element constructed from args before p;
not for associative containers

q=c.erase(p) Remove element at p from c
q=c.erase(first,last) Erase [first:last) of c
c.clear() Erase all elements of c

For insert() functions, the result, q, points to the last element inserted. For erase() functions, q
points to the element that followed the last element erased.

For containers with contiguous allocation, such as vector and deque, inserting and erasing an
element can cause elements to be moved. An iterator pointing to a moved element becomes
invalid. An element is moved if its position is after the insertion/deletion point or if all elements
are moved because the new size exceeds the previous capacity. For example:

vector<int> v {4,3,5,1};
auto p = v.begin()+2; // points to v[2], that is, the 5
v.push_back(6); // p becomes invalid; v == {4,3,5,1,6}
p = v.begin()+2; // points to v[2], that is, the 5
auto p2 = v.begin()+4; // p2 points to v[4], that is, the 6
v.erase(v.begin()+3); // v == {4,3,5,6}; p is still valid; p2 is invalid

Any operation that adds an element to a vector may cause every element to be reallocated (§13.6.4).
The emplace() operation is used when it is notationally awkward or potentially inefficient to first

create an object and then copy (or move) it into a container. For example:

void user(list<pair<string,double>>& lst)
{

auto p = lst.begin();
while (p!=lst.end()&& p−>first!="Denmark") // find an insertion point

/* do nothing */ ;
p=lst.emplace(p,"England",7.5); // nice and terse
p=lst.insert(p,make_pair("France",9.8)); // helper function
p=lst.insert(p,pair<string,double>>{"Greece",3.14}); // verbose

}

The forward_list does not provide operations, such as insert(), that operate before an element identi-
fied by an iterator. Such an operation could not be implemented because there is no general way of
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Rather, unique() moves unique elements toward the front (head) of a sequence and returns an itera-
tor to the end of the subsequence of unique elements. For example:

int main()
{

string s ="abbcccde";

auto p = unique(s.begin(),s.end());
cout << s << ' ' << p−s.begin() << '\n';

}

produces

abcdecde 5

That is, p points to the second c (that is, the first of the duplicates).
Algorithms that might have removed elements (but can’t) generally come in two forms: the

‘‘plain’’ version that reorders elements in a way similar to unique() and a _copy version that pro-
duces a new sequence in a way similar to unique_copy().

To eliminate duplicates from a container, we must explicitly shrink it:

template<class C>
void eliminate_duplicates(C& c)
{

sort(c.begin(),c.end()); // sor t
auto p = unique(c.begin(),c.end()); // compact
c.erase(p,c.end()); // shrink

}

I could equivalently have written c.erase(unique(c.begin(),c.end()),c.end()), but I don’t think such
terseness improves readability or maintainability.

32.5.3 remove() and replace()

The remove() algorithm ‘‘removes’’ elements to the end of a sequence:

remove (§iso.25.3.8)
p=remove(b,e ,v) Remove elements with value v from [b:e),

such that [b:p) becomes the elements for which !(�q==v)
p=remove_if(b,e ,v,f) Remove elements �q from [b:e),

such that [b:p) becomes the elements for which !f(�q)
p=remove_copy(b,e ,out,v) Copy elements from [b:e) for which !(�q==v) to [out:p)
p=remove_copy_if(b,e ,out,f) Copy elements from [b:e) for which !f(�q) to [out:p)
reverse(b,e) Reverse the order of elements in [b:e)
p=reverse_copy(b,e ,out) Copy [b:e) into [out:p) in rev erse order

The replace() algorithm assigns new values to selected elements:
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replace (§iso.25.3.5)
replace(b,e,v,v2) Replace elements �p in [b:e) for which �p==v with v2
replace_if(b,e,f,v2) Replace elements �p in [b:e) for which f(�p) with v2
p=replace_copy(b,e ,out,v,v2) Copy [b:e) to [out:p),

replacing elements for which �p==v with v2
p=replace_copy_if(b,e ,out,f,v2) Copy [b:e) to [out:p),

replacing elements for which f(�p,v) with v2

These algorithms cannot change the size of their input sequence, so even remove() leaves the size of
its input sequence unchanged. Like unique(), it ‘‘removes’’ by moving elements to the left. For
example:

string s {"�CamelCase�IsUgly�"};
cout << s << '\n'; // *CamelCase*IsUgly*
auto p = remove(s.begin(),s.end(),'�');
copy(s.begin(),p,ostream_iterator<char>{cout}); // CamelCaseIsUgly
cout << s << '\n'; // CamelCaseIsUglyly*

32.5.4 rotate(), random_shuffle(), and partition()

The rotate(), random_shuffle(), and partition() algorithms provide systematic ways of moving ele-
ments around in a sequence:

rotate() (§iso.25.3.11)
p=rotate(b,m,e) Left-rotate elements: treat [b:e) as a circle

with the first element right after the last;
move �(b+i) to �((b+(i+(e−m))%(e−b));
note: �b moves to �m; p=b+(e−m)

p=rotate_copy(b,m,e ,out) Copy [b:e) into a rotated sequence [out:p)

The movement of elements done by rotate() (and by the shuffle and partition algorithms) is done
using swap().

random_shuffle() (§iso.25.3.12)
random_shuffle(b,e) Shuffle elements of [b:e), using

the default random number generator
random_shuffle(b,e,f) Shuffle elements of [b:e), using

the random number generator f
shuffle(b,e,f) Shuffle elements of [b:e), using

the uniform random number generator f

A shuffle algorithm shuffles its sequence much in the way we would shuffle a pack of cards. That
is, after a shuffle, the elements are in a random order, where ‘‘random’’ is defined by the distribu-
tion produced by the random number generator.

By default, random_shuffle() shuffles its sequence using a uniform distribution random number
generator. That is, it chooses a permutation of the elements of the sequence so that each
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• Prefer unique_ptr to shared_ptr.
• Prefer ordinary scoped objects to objects on the heap owned by a unique_ptr.

The shared_ptr provides a fairly conventional set of operations:

shared_ptr<T> Operations (§iso.20.7.2.2)
cp is the contained pointer; uc is the use count

shared_ptr sp {} Default constructor: cp=nullptr; uc=0; noexcept
shared_ptr sp {p} Constructor: cp=p; uc=1
shared_ptr sp {p,del} Constructor: cp=p; uc=1; use deleter del
shared_ptr sp {p,del,a} Constructor: cp=p; uc=1; use deleter del and allocator a
shared_ptr sp {sp2} Move and copy constructors:

the move constructor moves and then sets sp2.cp=nullptr;
the copy constructor copies and sets ++uc for the now-shared uc

sp.˜shared_ptr() Destructor: −−uc; delete the object pointed to by cp if uc became 0,
using the deleter (the default deleter is delete)

sp=sp2 Copy assignment: ++uc for the now-shared uc; noexcept
sp=move(sp2) Move assignment: sp2.cp=nullptr for the now-shared uc; noexcept
bool b {sp}; Conversion to bool: sp.uc==nullptr; explicit
sp.reset() shared_ptr{}.swap(sp); that is, sp contains pointer{},

and the destruction of the temporary shared_ptr{}
decreases the use count for the old object; noexcept

sp.reset(p) shared_ptr{p}.swap(sp); that is, sp.cp=p; uc==1;
the destruction of the temporary shared_ptr decreases
the use count for the old object

sp.reset(p,d) Like sp.reset(p) but with the deleter d
sp.reset(p,d,a) Like sp.reset(p) but with the deleter d and the allocator a
p=sp.get() p=sp.cp; noexcept
x=�sp x=�sp.cp; noexcept
x=sp−>m x=sp.cp−>m; noexcept
n=sp.use_count() n is the value of the use count (0 if sp.cp==nullptr)
sp.unique() sp.uc==1? (does not check if sp.cp==nullptr)
x=sp.owner_before(pp) x is an ordering function (strict weak order; §31.2.2.1)

pp is a shared_ptr or a weak_ptr
sp.swap(sp2) Exchange sp’s and sp2’s values; noexcept

In addition, the standard library provides a few helper functions:

shared_ptr<T> Helpers (§iso.20.7.2.2.6, §iso.20.7.2.2.7) (continues)
sp=make_shared(args) sp is a shared_ptr<T> for an object of type T

constructed from the arguments args; allocated using new
sp=allocate_shared(a,args) sp is a shared_ptr<T> for an object of type T

constructed from the arguments args; allocated using allocator a
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shared_ptr<T> Helpers (continued) (§iso.20.7.2.2.6, §iso.20.7.2.2.7)
sp==sp2 sp.cp==sp2.cp; sp or sp2 may be the nullptr
sp<sp2 less<T�>(sp.cp,sp2.cp); sp or sp2 may be the nullptr
sp!=sp2 !(sp=sp2)
sp>sp2 sp2<sp
sp<=sp2 !(sp>sp2)
sp>=sp2 !(sp<sp2)
swap(sp,sp2) sp.swap(sp2)
sp2=static_pointer_cast(sp) static_cast for shared pointers:

sp2=shared_ptr<T>(static_cast<T�>(sp.cp)); noexcept
sp2=dynamic_pointer_cast(sp) dynamic_cast for shared pointers:

sp2=shared_ptr<T>(dynamic_cast<T�>(sp.cp)); noexcept
sp2=const_pointer_cast(sp) const_cast for shared pointers:

sp2=shared_ptr<T>(const_cast<T�>(sp.cp)); noexcept
dp=get_deleter<D>(sp) If sp has a deleter of type D, �dp is sp’s deleter;

otherwise, dp==nullptr; noexcept
os<<sp Write sp to ostream os

For example:

struct S {
int i;
string s;
double d;
// ...

};

auto p = make_shared<S>(1,"Ankh Morpork",4.65);

Now, p is a shared_ptr<S> pointing to an object of type S allocated on the free store, containing
{1,string{"Ankh Morpork"},4.65}.

Note that unlike unique_ptr::get_deleter(), shared_ptr’s deleter is not a member function.

34.3.3 weak_ptr

A weak_ptr refers to an object managed by a shared_ptr. To access the object, a weak_ptr can be
converted to a shared_ptr using the member function lock(). A weak_ptr allows access to an object,
owned by someone else, that

• You need access to (only) if it exists
• May get deleted (by someone else) at any time
• Must have its destructor called after its last use (usually to delete a non-memory resource)

In particular, we use weak pointers to break loops in data structures managed using shared_ptrs.
Think of a weak_ptr as a structure with two pointers: one to the (potentially shared) object and

one to the use count structure of that object’s shared_ptrs:

From the Library of Yihong Huang



994 Memory and Resources Chapter 34

sp1: sp2:wp:

use count
deleter

weak use count

Object

The ‘‘weak use count’’ is needed to keep the use count structure alive because there may be
weak_ptrs after the last shared_ptr for an object (and the object) is destroyed.

template<typename T>
class weak_ptr {
public:

using element_type = T;
// ...

};

A weak_ptr has to be converted to a shared_ptr to access ‘‘its’’ object, so it provides relatively few
operations:

weak_ptr<T> (§iso.20.7.2.3)
cp is the contained pointer; wuc is the weak use count

weak_ptr wp {}; Default constructor: cp=nullptr; constexpr; noexcept
weak_ptr wp {pp}; Copy constructor: cp=pp.cp; ++wuc;

pp is a weak_ptr or a shared_ptr; noexcept
wp.˜weak_ptr() Destructor: no effect on �cp; −−wuc
wp=pp Copy: decrease wuc and set wp to pp: weak_ptr(pp).swap(wp);

pp is a weak_ptr or a shared_ptr; noexcept
wp.swap(wp2) Exchange wp’s and wp2’s values; noexcept
wp.reset() Decrease wuc and set wp to nullptr:

weak_ptr{}.swap(wp); noexcept
n=wp.use_count() n is the number of shared_ptrs to �cp; noexcept
wp.expired() Are there any shared_ptrs to �cp? noexcept
sp=wp.lock() Make a new shared_ptr for �cp; noexcept
x=wp.owner_before(pp) x is an ordering function (strict weak order; §31.2.2.1);

pp is a shared_ptr or a weak_ptr
swap(wp,wp2) wp.swap(wp2); noexcept

Consider an implementation of the old ‘‘asteroid game.’’ All asteroids are owned by ‘‘the game,’’
but each asteroid must keep track of neighboring asteroids and handle collisions. A collision typi-
cally leads to the destruction of one or more asteroids. Each asteroid must keep a list of other aster-
oids in its neighborhood. Note that being on such a neighbor list should not keep an asteroid
‘‘alive’’ (so a shared_ptr would be inappropriate). On the other hand, an asteroid must not be
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For example:

void f()
{

string s {"accdcde"};

auto i1 = s.find("cd"); // i1==2 s[2]=='c' && s[3]=='d'
auto i2 = s.rfind("cd"); // i2==4 s[4]=='c' && s[5]=='d'

}

The find_�_of() functions differ from find() and rfind() by looking for a single character, rather than a
whole sequence of characters:

basic_string<C,Tr,A> Find Elements from a Set (§iso.21.4.7.4)
x can be a character, a string, or a C-style string; p is a C-style string. All operations are noexcept.
pos2=s.find_first_of(x,pos) Find a character from x in s[pos:s.size());

pos2 is the position of the first character from x
in s[pos:s.size()) or string::npos

pos=s.find_first_of(x) pos=s.find_first_of(s2,0)
pos2=s.find_first_of(p,pos,n) pos2=s.find_first_of(pos,basic_string{p,n})

pos2=s.find_last_of(x,pos) Find a character from x in s[0:pos);
pos2 is the position of the character from x
closest to the end of s or string::npos

pos=s.find_last_of(x) pos=s.find_first_of(s2,0)
pos2=s.find_last_of(p,pos,n) pos2=s.find_last_of(pos2,basic_string{p,n})

pos2=s.find_first_not_of(x,pos) Find a character not from x in s[pos:s.size());
pos2 is the position of the first character from x
not in s[pos:s.size()) or string::npos

pos=s.find_first_not_of(x) pos=s.find_first_not_of(s2,0)
pos2=s.find_first_not_of(p,pos,n) pos2=s.find_first_not_of(pos,basic_string{p,n})

pos2=s.find_last_not_of(x,pos) Find a character not from x in s[0:pos);
pos is the position of the character
from x closest to the end of s or string::npos

pos=s.find_last_not_of(x) pos=s.find_first_not_of(s2,0)
pos2=s.find_last_not_of(p,pos,n) pos=s.find_last_not_of(pos,basic_string{p,n})

For example:

string s {"accdcde"};

auto i1 = s.find("cd"); // i1==2 s[2=='c' && s[3]=='d'
auto i2 = s.rfind("cd"); // i2==4 s[4]=='c' && s[5]=='d'

auto i3 = s.find_first_of("cd"); // i3==1 s[1]=='c'
auto i4 = s.find_last_of("cd"); // i4==5 s[5]=='d'
auto i5 = s.find_first_not_of("cd"); // i5==0 s[0]!='c' && s[0]!='d'
auto i6 = s.find_last_not_of("cd"); // i6==6 s[6]!='c' && s[6]!='d'

From the Library of Yihong Huang



ptg10564057

1048 Strings Chapter 36

36.3.8 Substrings
A basic_string offers a low-level notion of substring:

basic_string<C,Tr,A> Substrings (§iso.21.4.7.8)
s2=s.substr(pos,n) s2=basic_string(&s[pos],m) where m=min(s.size()−n,n)
s2=s.substr(pos) s2=s.substr(pos,string::npos)
s2=s.substr() s2=s.substr(0,string::npos)

Note that substr() creates a new string:

void user()
{

string s = "Mary had a little lamb";
string s2 = s.substr(0,4); // s2 == "Mary"
s2 = "Rose"; // does not change s

}

We can compare substrings:

basic_string<C,Tr,A> Compare (§iso.21.4.7.9)
n=s.compare(s2) A lexicographical comparison of s and s2;

using char_traits<C>::compare() for comparison;
n=0 if s==s2; n<0 if s<s2; n>0 if s2>s; noexcept;

n2=s.compare(pos,n,s2) n2=basic_string{s,pos,n}.compare(s2)
n2=s.compare(pos,n,s2,pos2,n2) n2=basic_string{s,pos,n}.compare(basic_string{s2,pos2,n2})

n=s.compare(p) n=compare(basic_string{p});
p is a C-style string

n2=s.compare(pos,n,p) n2=basic_string{s,pos,n}.compare(basic_string{p});
p is a C-style string

n2=s.compare(pos,n,p,n2) n2=basic_string{s,pos,n}.compare(basic_string{p,n2});
p is a C-style string

For example:

void f()
{

string s = "Mary had a little lamb";
string s2 = s.substr(0,4); // s2 == "Mary"
auto i1 = s.compare(s2); // i1 is positive
auto i2 = s.compare(0,4,s2); // i2==0

}

This explicit use of constants to denote positions and lengths is brittle and error-prone.

From the Library of Yihong Huang



Section 36.4 Advice 1049

36.4 Advice
[1] Use character classifications rather than handcrafted checks on character ranges; §36.2.1.
[2] If you implement string-like abstractions, use character_traits to implement operations on

characters; §36.2.2.
[3] A basic_string can be used to make strings of characters on any type; §36.3.
[4] Use strings as variables and members rather than as base classes; §36.3.
[5] Prefer string operations to C-style string functions; §36.3.1.
[6] Return strings by value (rely on move semantics); §36.3.2.
[7] Use string::npos to indicate ‘‘the rest of the string’’; §36.3.2.
[8] Do not pass a nullptr to a string function expecting a C-style string; §36.3.2.
[9] A string can grow and shrink, as needed; §36.3.3.
[10] Use at() rather than iterators or [] when you want range checking; §36.3.3, §36.3.6.
[11] Use iterators and [] rather than at() when you want to optimize speed; §36.3.3, §36.3.6.
[12] If you use strings, catch length_error and out_of_range somewhere; §36.3.3.
[13] Use c_str() to produce a C-style string representation of a string (only) when you have to;

§36.3.3.
[14] string input is type sensitive and doesn’t overflow; §36.3.4.
[15] Prefer a string_stream or a generic value extraction function (such as to<X>) over direct use of

str� numeric conversion functions; §36.3.5.
[16] Use the find() operations to locate values in a string (rather than writing an explicit loop);

§36.3.7.
[17] Directly or indirectly, use substr() to read substrings and replace() to write substrings; §36.3.8.
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protected Put and Get basic_streambuf<C,Tr> Operations (continued) (§iso.27.6.3)
sb.setp(b,e) The put area is [b,e) the current put pointer is b
pc=sb.pbase() [pc:sb.epptr()) is the put area
pc=sb.pptr() pc is the put pointer
pc=sb.epptr() [sb.pbase(),pc) is the put area
sb.pbump(n) Add one to the put pointer
n2=sb.xsgetn(s,n) s is a const char�; do sb.sgetc(�p) for each p in [s:s+n);

n2 is the number of characters read; virtual
n2=sb.xsputn(s,n) s is a [const char�; sb.sputc(�p) for each p in [s:s+n);

n2 is the number of character written; virtual
n=sb.overflow(c) Replenish the put area, then n=sb.sputc(c); virtual
n=sb.overflow() n=sb.overflow(Tr::eof())

The showmanyc() (‘‘show how many characters’’) function is an odd function intended to allow a
user to learn something about the state of a machine’s input system. It returns an estimate of how
many characters can be read ‘‘soon,’’ say, by emptying the operating system’s buffers rather than
waiting for a disk read. A call to showmanyc() returns −1 if it cannot promise that any character can
be read without encountering end-of-file. This is (necessarily) rather low-level and highly imple-
mentation-dependent. Don’t use showmanyc() without a careful reading of your system documenta-
tion and conducting a few experiments.

38.6.1 Output Streams and Buffers
An ostream provides operations for converting values of various types into character sequences
according to conventions (§38.4.2) and explicit formatting directives (§38.4.5). In addition, an
ostream provides operations that deal directly with its streambuf:

template<typename C, typename Tr = char_traits<C>>
class basic_ostream : virtual public basic_ios<C,Tr> {
public:

// ...
explicit basic_ostream(basic_streambuf<C,Tr>� b);

pos_type tellp(); // get current position
basic_ostream& seekp(pos_type); // set current position
basic_ostream& seekp(off_type, ios_base::seekdir); // set current position

basic_ostream& flush(); // empty buffer (to real destination)

basic_ostream& operator<<(basic_streambuf<C,Tr>� b); // write from b
};

The basic_ostream functions override their equivalents in the basic_ostream’s basic_ios base.
An ostream is constructed with a streambuf argument, which determines how the characters

written are handled and where they eventually go. For example, an ostringstream (§38.2.2) or an
ofstream (§38.2.1) is created by initializing an ostream with a suitable streambuf (§38.6).
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The seekp() functions are used to position an ostream for writing. The p suffix indicates that it
is the position used for putting characters into the stream. These functions have no effect unless the
stream is attached to something for which positioning is meaningful, such as a file. The pos_type
represents a character position in a file, and the off_type represents an offset from a point indicated
by an ios_base::seekdir.

Stream positions start at 0, so we can think of a file as an array of n characters. For example:

int f(ofstream& fout) // fout refers to some file
{

fout << "0123456789";
fout.seekp(8); // 8 from beginning
fout << '#'; // add '#' and move position (+1)
fout.seekp(−4,ios_base::cur); // 4 backward
fout << '�'; // add '*' and move position (+1)

}

If the file was initially empty, we get:

01234�67#9

There is no similar way to do random access on elements of a plain istream or ostream. Attempting
to seek beyond the beginning or the end of a file typically puts the stream into the bad() state
(§38.4.4). However, some operating systems have operating modes where the behavior differs
(e.g., positioning might resize a file).

The flush() operation allows the user to empty the buffer without waiting for an overflow.
It is possible to use << to write a streambuf directly into an ostream. This is primarily handy for

implementers of I/O mechanisms.

38.6.2 Input Streams and Buffers
An istream provides operations for reading characters and converting them into values of various
types (§38.4.1). In addition, an istream provides operations that deal directly with its streambuf:

template<typename C, typename Tr = char_traits<C>>
class basic_istream : virtual public basic_ios<C,Tr> {
public:

// ...
explicit basic_istream(basic_streambuf<C,Tr>� b);
pos_type tellg(); // get current position
basic_istream& seekg(pos_type); // set current position
basic_istream& seekg(off_type, ios_base::seekdir); // set current position

basic_istream& putback(C c); // put c back into the buffer
basic_istream& unget(); // put back most recent char read
int_type peek(); // look at next character to be read

int sync(); // clear buffer (flush)

basic_istream& operator>>(basic_streambuf<C,Tr>� b); // read into b
basic_istream& get(basic_streambuf<C,Tr>& b, C t = Tr::newline());
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streamsize readsome(C� p, streamsize n); // read at most n char
};

The basic_istream functions override their equivalents in the basic_istream’s basic_ios base.
The positioning functions work like their ostream counterparts (§38.6.1). The g suffix indicates

that it is the position used for getting characters from the stream. The p and g suffixes are needed
because we can create an iostream derived from both istream and ostream, and such a stream needs
to keep track of both a get position and a put position.

The putback() function allows a program to put a character ‘‘back’’ into an istream to be the next
character read. The unget() function puts the most recently read character back. Unfortunately,
backing up an input stream is not always possible. For example, trying to back up past the first
character read will set ios_base::failbit. What is guaranteed is that you can back up one character
after a successful read. The peek() function reads the next character and also leaves that character
in the streambuf so that it can be read again. Thus, c=peek() is logically equivalent to
(c=get(),unget(),c). Setting failbit might trigger an exception (§38.3).

Flushing an istream is done using sync(). This cannot always be done right. For some kinds of
streams, we would have to reread characters from the real source – and that is not always possible
or desirable (e.g., for a stream attached to a network). Consequently, sync() returns 0 if it suc-
ceeded. If it failed, it sets ios_base::badbit (§38.4.4) and returns −1. Setting badbit might trigger an
exception (§38.3). A sync() on a buffer attached to an ostream flushes the buffer to output.

The >> and get() operations that directly reads from a streambuf are primarily useful for imple-
menters of I/O facilities.

The readsome() function is a low-level operation that allows a user to peek at a stream to see if
there are any characters available to read. This can be most useful when it is undesirable to wait for
input, say, from a keyboard. See also in_avail() (§38.6).

38.6.3 Buffer Iterators
In <iterator>, the standard library provides istreambuf_iterator and ostreambuf_iterator to allow a user
(mostly an implementer of a new kind of iostream) to iterate over the contents of a stream buffer. In
particular, these iterators are widely used by locale facets (Chapter 39).

38.6.3.1 istreambuf_iterator

An istreambuf_iterator reads a stream of characters from an istream_buffer:

template<typename C, typename Tr = char_traits<C>> // §iso.24.6.3
class istreambuf_iterator

:public iterator<input_iterator_tag, C, typename Tr::off_type , /*unspecified*/, C> {
public:

using char_type = C;
using traits_type = Tr;
using int_type = typename Tr::int_type;
using streambuf_type = basic_streambuf<C,Tr>;
using istream_type = basic_istream<C,Tr>;
// ...

};
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reading a file). Alternatively, a program can request a user to specify alternative locales by entering
a string. For example:

void user_set_locale(const string& question)
{

cout << question; // e.g., "If you want to use a different locale, please enter its name"
string s;
cin >> s;
locale::global(locale{s}); // set global locale as specified by user

}

It is usually better to let a non-expert user pick from a list of alternatives. A function implementing
this would need to know where and how a system keeps its locales. For example, many Linux sys-
tems keep their locales in the directory /usr/share/locale.

If the string argument doesn’t refer to a defined locale, the constructor throws the runtime_error
exception (§30.4.1.1). For example:

void set_loc(locale& loc, const char� name)
try
{

loc = locale{name};
}
catch (runtime_error&) {

cerr << "locale
// ...

}

If a locale has a name string, name() will return it. If not, name() will return string("�"). A name
string is primarily a way to refer to a locale stored in the execution environment. Secondarily, a
name string can be used as a debugging aid. For example:

void print_locale_names(const locale& my_loc)
{

cout << "name of current global locale: " << locale().name() << "\n";
cout << "name of classic C locale: " << locale::classic().name() << "\n";
cout << "name of ‘‘user's preferred locale'': " << locale("").name() << "\n";
cout << "name of my locale: " << my_loc.name() << "\n";

}

39.2.1.1 Constructing New locales

A new locale is made by taking an existing locale and adding or replacing facets. Typically, a new
locale is a minor variation on an existing one. For example:

void f(const locale& loc, const My_money_io� mio) // My_money_io defined in §39.4.3.1
{

locale loc1(locale{"POSIX"},loc,locale::monetary); // use monetary facets from loc
locale loc2 = locale(locale::classic(), mio); // classic plus mio
// ...

}
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protected:
˜collate_byname(); // note: protected destructor

int do_compare(const C� b, const C� e, const C� b2, const C� e2) const override;
string_type do_transform(const C� b, const C� e) const override;
long do_hash(const C� b, const C� e) const override;

};

Thus, a collate_byname can be used to pick out a collate from a locale named in the program’s
execution environment (§39.4). One obvious way of storing facets in an execution environment
would be as data in a file. A less flexible alternative would be to represent a facet as program text
and data in a _byname facet.

39.4.2 Numeric Formatting
Numeric output is done by a num_put facet writing into a stream buffer (§38.6). Conversely,
numeric input is done by a num_g et facet reading from a stream buffer. The format used by
num_put and num_g et is defined by a ‘‘numerical punctuation’’ facet called numpunct.

39.4.2.1 Numeric Punctuation

The numpunct facet defines the I/O format of built-in types, such as bool, int, and double:

numpunct<C> facet (§iso.22.4.6.3.1)
C decimal_point() const; E.g., ’.’
C thousands_sep() const; E.g., ’,’
string grouping() const; E.g., "" meaning ‘‘no grouping’’
string_type truename() const; E.g., "true"
string_type falsename() const; E.g., "false"

The characters of the string returned by grouping() are read as a sequence of small integer values.
Each number specifies a number of digits for a group. Character 0 specifies the rightmost group
(the least significant digits), character 1 the group to the left of that, etc. Thus, "\004\002\003"
describes a number such as 123−45−6789 (provided you use '−' as the separation character). If nec-
essary, the last number in a grouping pattern is used repeatedly, so "\003" is equivalent to
"\003\003\003". The most common use of grouping is to make large numbers more readable. The
grouping() and thousands_sep() functions define a format for both input and output of integers and
the integer part of floating-point values.

We can define a new punctuation style by deriving from numpunct. For example, I could define
facet My_punct to write integer values using spaces to group the digits in sets of three and floating-
point values, using a European-style comma as the ‘‘decimal point’’:

class My_punct : public numpunct<char> {
public:

explicit My_punct(size_t r = 0) :numpunct<char>(r) { }
protected:

char do_decimal_point() const override { return ','; } // comma
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40
Numerics

The purpose of computing is insight, not numbers.
– R. W. Hamming

... but for the student,
numbers are often the best road to insight.

– A. Ralston

• Introduction
• Numerical Limits

Limit Macros
• Standard Mathematical Functions
• complex Numbers
• A Numerical Array: valarray

Constructors and Assignments; Subscripting; Operations; Slices; slice_array; Generalized
Slices

• Generalized Numerical Algorithms
accumulate(); inner_product(); partial_sum() and adjacent_difference(); iota()

• Random Numbers
Engines; Random Device; Distributions; C-Style Random Numbers

• Advice

40.1 Introduction
C++ was not designed primarily with numeric computation in mind. However, numeric computa-
tion typically occurs in the context of other work – such as database access, networking, instrument
control, graphics, simulation, and financial analysis – so C++ becomes an attractive vehicle for
computations that are part of a larger system. Furthermore, numeric methods have come a long
way from being simple loops over vectors of floating-point numbers. Where more complex data
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structures are needed as part of a computation, C++’s strengths become relevant. The net effect is
that C++ is widely used for scientific, engineering, financial, and other computation involving
sophisticated numerics. Consequently, facilities and techniques supporting such computation have
emerged. This chapter describes the parts of the standard library that support numerics. I make no
attempt to teach numeric methods. Numeric computation is a fascinating topic in its own right. To
understand it, you need a good course in numerical methods or at least a good textbook – not just a
language manual and tutorial.

In addition to the standard-library facilities described here, Chapter 29 is an extended example
of numerical programming: an N-dimensional matrix.

40.2 Numerical Limits
To do anything interesting with numbers, we typically need to know something about the general
properties of built-in numeric types. To allow the programmer to best take advantage of hardware,
these properties are implementation-defined rather than fixed by the rules of the language itself
(§6.2.8). For example, what is the largest int? What is the smallest positive float? Is a double
rounded or truncated when assigned to a float? How many bits are there in a char?

Answers to such questions are provided by the specializations of the numeric_limits template
presented in <limits>. For example:

void f(double d, int i)
{

char classification[numeric_limits<unsigned char>::max()];

if (numeric_limits<unsigned char>::digits==numeric_limits<char>::digits ) {
// chars are unsigned

}

if (i<numeric_limits<shor t>::min() || numeric_limits<shor t>::max()<i) {
// i cannot be stored in a short without loss of digits

}

if (0<d && d<numeric_limits<double>::epsilon()) d = 0;

if (numeric_limits<Quad>::is_specializ ed) {
// limits infor mation is available for type Quad

}
}

Each specialization provides the relevant information for its argument type. Thus, the general
numeric_limits template is simply a notational handle for a set of constants and constexpr functions:

template<typename T>
class numeric_limits {
public:

static const bool is_specialized = false; // is infor mation available for numer ic_limits<T>?
// ... uninteresting defaults ...

};
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The real information is in the specializations. Each implementation of the standard library provides
a specialization of numeric_limits for each fundamental numeric type (the character types, the inte-
ger types, the floating-point types, and bool) but not for any other plausible candidates such as void,
enumerations, or library types (such as complex<double>).

For an integral type such as char, only a few pieces of information are of interest. Here is
numeric_limits<char> for an implementation in which a char has 8 bits and is signed:

template<>
class numeric_limits<char> {
public:

static const bool is_specialized = true; // yes, we have infor mation

static const int digits = 7; // number of bits (‘‘binar y digits’’) excluding sign

static const bool is_signed = true; // this implementation has char signed
static const bool is_integer = true; // char is an integral type

static constexpr char min() noexcept { return −128; } // smallest value
static constexpr char max() noexcept { return 127; } // largest value

// lots of declarations not relevant to a char
};

The functions are constexpr, so that they can be used where a constant expression is required and
without run-time overhead.

Most members of numeric_limits are intended to describe floating-point numbers. For example,
this describes one possible implementation of float:

template<>
class numeric_limits<float> {
public:

static const bool is_specialized = true;

static const int radix = 2; // base of exponent (in this case, binar y)
static const int digits = 24; // number of radix digits in mantissa
static const int digits10 = 9; // number of base 10 digits in mantissa

static const bool is_signed = true;
static const bool is_integer = false;
static const bool is_exact = false;

static constexpr float min() noexcept { return 1.17549435E−38F; } // smallest positive
static constexpr float max() noexcept { return 3.40282347E+38F; } // largest positive
static constexpr float lowest() noexcept { return −3.40282347E+38F; } // smallest value

static constexpr float epsilon() noexcept { return 1.19209290E−07F; }
static constexpr float round_error() noexcept { return 0.5F; } // maximum rounding error

static constexpr float infinity() noexcept { return /* some value */; }











































1182 Numerics Chapter 40

Most of the time, most programmers just need a simple uniform distribution of integers or floating-
point numbers in a given range. For example:

void test()
{

Rand_int ri {10,20}; // unifor m distr ibution of ints in [10:20)
Rand_double rd {0,0.5}; // unifor m distr ibution of doubles in [0:0.5)

for (int i=0; i<100; ++i)
cout << ri() << ' ';

for (int i=0; i<100; ++i)
cout << rd() << ' ';

}

Unfortunately, Ran_int and Rand_double are not standard classes, but they are easy to build:

class Rand_int {
Rand_int(int lo, int hi) : p{lo,hi} { } // store the parameters
int operator()() const { return r(); }

private:
uniform_int_distribution<>::param_type p;
auto r = bind(uniform_int_distribution<>{p},default_random_engine{});

};

I store the parameters using the distribution’s standard param_type alias (§40.7.3) so that I can use
auto to avoid having to name the result of the bind().

Just for variation, I use a different technique for Rand_double:

class Rand_double {
public:

Rand_double(double low, double high)
:r(bind(uniform_real_distribution<>(low,high),default_random_engine())) { }

double operator()() { return r(); }
private:

function<double()> r;
};

One important use of random numbers is for sampling algorithms. In such algorithms we need to
choose a sample of some size from a much larger population. Here is algorithm R (the simplest
algorithm) from a famous old paper [Vitter,1985]:

template<typename Iter, typename Size, typename Out, typename Gen>
Out random_sample(Iter first, Iter last, Out result, Size n, Gen&& gen)
{

using Dist = uniform_int_distribution<Siz e>;
using Param = typename Dist::param_type;

// Fill the reservoir and advance first:
copy(first,n,result);
advance(first,n);
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42.2.4 join()

A t.join() tells the current thread not to proceed until t completes. For example:

void tick(int n)
{

for (int i=0; i!=n; ++i) {
this_thread::sleep_for(second{1}); // §42.2.6
output("Alive!");

}
}

int main()
{

thread timer {tick,10};
timer.join();

}

This will output Alive! ten times at about 1-second intervals. Had the timer.join() been missing, the
program would have terminated before tick() could have printed anything. The join() made the main
program wait for the timer to complete.

As mentioned in §42.2.3, trying to have a thread execute past the end of its scope (or more gen-
erally, after its destructor is run) without calling detach() is considered a fatal (for the program)
error. Howev er, we can forget to join() a thread. When we view a thread as a resource, we see that
we should consider RAII (§5.2, §13.3). Consider a simple test example:

void run(int i, int n) // warning: really poor code
{

thread t1 {f};
thread t2;
vector<Foo> v;
// ...
if (i<n) {

thread t3 {g};
// ...
t2 = move(t3); // move t3 to outer scope

}
v[i] = Foo{}; // might throw
// ...
t1.join();
t2.join();

}

Here, I have made several bad mistakes. In particular:
• We may never reach the two join()s at the end. In that case, the destructor for t1 will termi-

nate the program.
• We may reach the two join()s at the end without the move t2=move(t3) having executed. In

that case, t2.join() will terminate the program.
For this kind of thread use, we need a destructor that implicitly join()s. For example:
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struct guarded_thread : thread {
using thread::thread; // §20.3.5.1
˜guarded_thread() { if (t.joinable()) t.join(); }

};

Unfortunately, guarded_thread is not a standard-library class, but in the best RAII tradition
guarded_thread makes our code shorter and less error-prone. For example:

void run2(int i, int n) // simple use of a guard
{

guarded_thread t1 {f};
guarded_thread t2;
vector<Foo> v;
// ...
if (i<n) {

thread t3 {g};
// ...
t2 = move(t3); // move t3 to outer scope

}
v[i] = Foo{}; // might throw
// ...

}

But why doesn’t the thread’s destructor just join()? There is a long-standing tradition of using sys-
tem threads that ‘‘live forever’’ or decide for themselves when to terminate. Had it worked, the
timer executing tick() (§42.2.2) would have been an example of such a thread. Threads monitoring
data structures provide many more examples. Such threads (and processes) are often called dae-
mons. Another use for detached threads is to simply initiate a thread to complete a task and forget
about it. Doing so leaves the ‘‘housekeeping’’ to the run-time system.

42.2.5 detach()

Accidentally letting a thread try to execute beyond its destructor is considered a very bad error. If
you really want a system thread to outlive its thread (handle), use detach(). For example:

void run2()
{

thread t {heartbeat};
t.detach(); // let heartbeat run independently

}

I hav e a philosophical problem with detached threads. Given a choice, I would prefer to
• know exactly which threads are running,
• be able to determine if threads are making progress as expected,
• be able to check if threads that are supposed to delete themselves really do so,
• be able to know whether it is safe to use the results of a thread,
• be sure that all resources associated with a thread are properly released, and
• be sure that a thread does not try to access objects from the scope in which it was created

after that scope has been destroyed.
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void next()
{

while (true) {
Image next_image;
// ... compute ...

if (imtx.try_lock(milliseconds{100})) {
buf = next_image;
imtx.unlock();

}
}

}

The assumption here is that if the image cannot be updated reasonably fast (here, in 100 millisec-
onds), the user would prefer a newer version of the image. Further, it is assumed that missing an
image in a sequence of updated images will rarely be noticed, so that a more complicated solution
is not needed.

42.3.1.4 lock_guard and unique_lock

A lock is a resource, so we must not forget to release it. That is, each m.lock() operation must be
matched by an m.unlock() operation. The usual opportunities for mistakes exist; for example:

void use(mutex& mtx, Vector<string>& vs, int i)
{

mtx.lock();
if (i<0) return;
string s = vs[i];
// ...
mtx.unlock();

}

The mtx.unlock() is there, but if i<0 or if i is out of vs’s range and vs is range checked, the thread of
execution never gets to the mtx.unlock() and mtx may be locked forever.

The standard library provides two RAII classes, lock_guard and unique_lock, to handle such
problems.

The ‘‘plain’’ lock_guard is the simplest, smallest, and fastest guard. In exchange for added func-
tionality, unique_ptr carries a small cost, which may or may not be significant for a given applica-
tion on a given machine.

lock_guard<M> (§iso.30.4.2)
m is a lockable object

lock_guard lck {m}; lck acquires m; explicit
lock_guard lck {m,adopt_lock_t}; lck holds m; assume that the current thread

has already acquired m; noexcept
lck.˜lock_guard() Destructor: calls unlock() for the mutex held

For example:
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Section 44.2.3 Deprecated Features 1271

C-style casts should have been deprecated when the named casts (§11.5.2) were introduced.
Programmers should seriously consider banning C-style casts from their own programs. Where
explicit type conversion is necessary, static_cast, reinterpret_cast, const_cast, or a combination of
these can do what a C-style cast can. The named casts should be preferred because they are more
explicit and more visible.

44.2.4 Coping with Older C++ Implementations
C++ has been in constant use since 1983 (§1.4). Since then, several versions have been defined,
and many separately developed implementations have emerged. The fundamental aim of the stan-
dards effort was to ensure that implementers and users would have a single definition of C++ to
work from. From 1998, programmers could rely on the ISO C++98 standard, and now we hav e the
ISO C++11 standard.

Unfortunately, it is not uncommon for people to take their first serious look at C++ using a five-
year-old implementation. The typical reason is that such implementations are widely available and
free. Given a choice, no self-respecting professional would touch such an antique. Also, many
modern quality implementations are available for free. For a novice, older implementations come
with serious hidden costs. The lack of language features and library support means that the novice
must struggle with problems that have been eliminated in newer implementations. Using a feature-
poor older implementation, especially if guided by an antique tutorial, warps the novice’s program-
ming style and gives a biased view of what C++ is. The best subset of C++ to initially learn is not
the set of low-level facilities (and not the common C and C++ subset; see §1.3). In particular, to
ease learning and to get a good initial impression of what C++ programming can be, I recommend
relying on the standard library, and to heavily use classes, templates, and exceptions.

There are still places, where for political reasons or lack of suitable tool chains, C is preferred
over C++. If you must use C, write in the common subset of C and C++. That way, you gain some
type safety, increase portability, and will be ready when C++ features become available to you. See
also §1.3.3.

Use an implementation that conforms to the standard wherever possible, and minimize the
reliance on implementation-defined and undefined aspects of the language. Design as if the full
language were available, and only use workarounds when necessary. This leads to better organized
and more maintainable programs than designing for a lowest-common-denominator subset of C++.
Also, use implementation-specific language extensions only when necessary. See also §1.3.2.

44.3 C/C++ Compatibility
With minor exceptions, C++ is a superset of C (meaning C11, defined by ISO/IEC 9899:2011(E)).
Most differences stem from C++’s greater emphasis on type checking. Well-written C programs
tend to be C++ programs as well. A compiler can diagnose every difference between C++ and C.
The C99/C++11 incompatibilities are listed in §iso.C. At the time of writing, C11 is still very new
and most C code is Classic C or C99.
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44.3.1 C and C++ Are Siblings
Classic C has two main descendants: ISO C and ISO C++. Over the years, these languages have
ev olved at different paces and in different directions. One result of this is that each language pro-
vides support for traditional C-style programming in slightly different ways. The resulting incom-
patibilities can make life miserable for people who use both C and C++, for people who write in
one language using libraries implemented in the other, and for implementers of libraries and tools
for C and C++.

How can I call C and C++ siblings? Clearly, C++ is a descendant of C. However, look at a
simplified family tree:

BCPLSimula

B

K&R C

Classic C

C with Classes

Early C++

ARM C++

C++98

C++11

C89

C99

C11

1967

1978

1980

1985

1989

1998

2011

A solid line means a massive inheritance of features, a dashed line a borrowing of major features,
and a dotted line a borrowing of minor features. From this, ISO C and ISO C++ emerge as the two
major descendants of K&R C, and as siblings. Each carries with it the key aspects of Classic C, and
neither is 100% compatible with Classic C. I picked the term ‘‘Classic C’’ from a sticker that used
to be affixed to Dennis Ritchie’s terminal. It is K&R C plus enumerations and struct assignment.

Incompatibilities are nasty for programmers in part because they create a combinatorial explo-
sion of alternatives. Consider a simple Venn diagram:
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C++98 C99

C89

C++11 C11

The areas are not to scale. Both C++11 and C11 have most of K&R C as a subset. C++11 has
most of C11 as a subset. There are features belonging to most of the distinct areas. For example:

C89 only Call of undeclared function
C99 only Variable-length arrays (VLAs)
C++ only Templates
C89 and C99 Algol-style function definitions
C89 and C++ Use of the C99 keyword restrict as an identifier
C++ and C99 // comments
C89, C++, and C99 structs
C++11 only Move semantics (using rvalue references; &&)
C11 only Type-generic expressions using the _Generic keyword
C++11 and C11 Atomics

Note that differences between C and C++ are not necessarily the result of changes to C made in
C++. In several cases, the incompatibilities arise from features adopted incompatibly into C long
after they were common in C++. Examples are the ability to assign a T� to a void� and the linkage
of global consts [Stroustrup,2002]. Sometimes, a feature was even incompatibly adopted into C
after it was part of the ISO C++ standard, such as details of the meaning of inline.

44.3.2 ‘‘Silent’’ Differences
With a few exceptions, programs that are both C++ and C have the same meaning in both lan-
guages. Fortunately, these exceptions (often referred to as silent differences) are rather obscure:

• In C, the size of a character constant and of an enumeration equals sizeof(int). In C++,
sizeof('a') equals sizeof(char).

• In C, an enumerator is an int, whereas a C++ implementation is allowed to choose whatever
size is most appropriate for an enumeration (§8.4.2).

• In C++, the name of a struct is entered into the scope in which it is declared; in C, it is not.
Thus, the name of a C++ struct declared in an inner scope can hide the name in an outer
scope. For example:
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invalidate iterator 898
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class 454
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rationale 485
resource 521

I/O 91
example, String 568
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and features 1267
pos_for mat(), moneypunct 1136
position, bit 978
position(), match_results 1060
positive_sign(), moneypunct 1136
POSIX

<cerrno> 880
errc 880
thread support 1192

postcondition 330
pos_type

char_traits 1035
streampos 1035

pow() 1163
valarray 1170

#pragma 341
precedence, operator 255
precondition 56, 330

failure 359
testing 359

predefined
, 531
= 531
& 531
macro 340
meaning for operator 531
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concept and 672
type 785

Predicate 716
preempt, thread 1217
preferred locale 1114
prefix

’ 147
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" 147
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L’ 147
L" 147
literal 147
R" 147
return type 308
u’ 147
u" 147
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U’ 147
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prefix(), match_results 1060
premature delete 279
pre-standard implementation 1271
prev(), iterator 959
prev_per mutation() 940
primary template 735
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print, regex 1054

printf() example 809
priority queue 923
priorityqueue 887
priority_queue

and heap 924
implementation 923
pop() of 923
push() of 923
top() of 923

private member of base class 581
private

: 454, 600
base 605
class member 453

problem
= initialization 492
() initialization 492

procedural programming 11
process 1192
product

dot 1179
inner 1179

program 39
and C++, large 16
large 435, 437
non-C++ 442
partitioning of 431, 435
start 441
structure, logical 420
structure, physical 419–420
termination 443

programmer
C# 20
C++ 19
C 19
Java 20

programming 31
class-oriented 11
compile-time 780
generative 779
generic 11, 78, 699
ideals 10
meta 779
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prohibiting
= 531
, 531
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destructor 1237
future and 120, 1236
get_future() 1237
member set_exception() 120
member set_value() 120
packaged_task and future and 1238
set_exception() 1237
set_exception_at_thread_exit() 1237
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bool 267
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propagation, exception 870
protected

: 600
base 605, 618
constructor 1119
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protection 454
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ptrdiff_t 150, 259, 865
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: 453–454, 600
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punct, regex 1054
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C++ 8
functional programming 780
vir tual 65
vir tual function 598

purpose
of namespace 408
template 699

push()
of priority_queue 923

of queue 922
of stack 920

push_back() 64, 99
container 900
string 1041

pushback(), vector 385
push_front() 99
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push_heap() 948
put()
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num_put 1130
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{} 287
name 589
name, namespace 392
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queue
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priority 923
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message 922
pop() of 922
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<queue> 863
quick_exit() 443
quiet_NaN() 1161
quote

", double 176
\", double 143
’, single 143
\’, single 143
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R
R" 128, 177
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\r, carriage return 143
r, file mode 1254
race, data 115, 1197
RAII 356

constructor destructor 486
lock() and 118
resource acquisition 112
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RAII 64
rand(), random number 1189
Rand_int example 130
RAND_MAX 1189
random

number 939, 1180
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number rand() 1189
number, truly 1185

random
distribution 129
engine 129
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random-access iterator 955
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recursive
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reduce() 701
reduction 1178
ref() 968
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